Аннотації

Автор(и):
Chun Xiang Huang, Liling Xia, Ryzhkov Sergiy
Дата публікації:

28.10.2021

Анотація (укр):

Натурний експериментальний фотокаталітичний зразок сепаратора складається з п’яти однакових модулів очищення. Кожен з модулів складається з розділових елементів для підвищення рівня очищення. Обладнання (розраховане на об’єм повітря G = 50…150 м3/год) повинно знизити ступінь мікробного забруднення повітря до необхідного рівня (вловлювати частинки 0,1 мкм) та сприяти зниженню ризику захворювань, що передаються повітряно-крапельним шляхом. Проєкт передбачає вирішення важливої науково-технічної проблеми створення та розроблення фотокаталітичного та ультразвукового тепломасообмінного обладнання для очищення повітря від пилу та вірусів (коронавірус SARS-COV-2). Фільтрація є доволі економним і ефективним методом покращення системи кондиціонування повітря, системи фільтрації повітря. Вона є добрим рішенням для покращення якості повітря в приміщенні (IAQ), а антимікробна обробка (профілактика коронавірусу SARS-COV-2) фільтрів може бути рішенням цих проблем. Попередити накопичення і розсіювання мікроорганізмів можна шляхом додавання на поверхні фільтра антимікробних засобів, що сприяє покращенню якості повітря. Очищення від пилу і вірусів та рідких середовищ розміром менше 1 мкм потребує розроблення повітроочисного сепараційного обладнання, здатного вловлювати частинки такого розміру з впровадженням ресурсозберігаючих функцій на основі фотокаталітичного та ультразвукового обладнання. Розробка фотокаталітичного й ультразвукового тепломасообмінного обладнання для очищення повітря від пилу і вірусів (профілактика коронавірусу SARS-COV-2) базується на багаторівневих градієнтних аерозольних технологіях, а також дослідженнях методів їх контролю. Це їх спільне використання за наявності значних градієнтів гідродинамічних і теплофізичних параметрів (температура, тиск, швидкість, щільність та ін.).

Анотація (рус):

Анотація (англ):

The Full-scale experimental photocatalytic sample of separator consists of 5 equal purification modules. Each of the modules consists of separation elements for increasing of purification level. The equipment is designed for air volume G = 50… 150 m3 / hour, should reduce the degree of microbial contamination of the air to the required level (capture particles of 0.1 μm) and help reduce the risk of airborne diseases. Project considers solving an important scientific and technical problem of creating and development of photocatalytic and ultrasonic heat and mass transfer separation equipment for air clean from dust and viruses (coronavirus SARS-COV-2). Filtration is a quite economical and efficient method of improving air-conditioning system, the air filtration systems represent a good solution for the improvement of Indoor Air Quality (IAQ), and the Antimicrobial treatments (coronavirus SARS-COV-2 prevention) of filters may be a solution to these problems. It is possible to prevent the accumulation and dispersion of microorganisms by adding anti-microbial agents on the surfaces of filter, which contributes to the improvement of air quality. Purification from dust and viruses and liquid media smaller than 1 μm requires development of air-purifying separation equipment able to capture particles of this size with implementation of resource-saving features base on photocatalytic and ultrasonic equipment. Development of photocatalytic and ultrasonic heat and mass transfer separation equipment for air clean from dust and viruses (coronavirus SARS-COV-2 prevention) is based on multilevel gradient aerosol technologies, as well as research of methods of their control, is their joint use in the presence of substantial gradients of the hydrodynamic and thermophysical parameters (temperature, pressure, velocity, density, etc.).

Література:

  1. Kalvert, S., Inglund, G. M. (1988). Atmosphere protection from industrial pollution: reference book, part 1. Moscow, Metallurgiya Publ., 760. 
  2. Kalvert, S., Inglund, G. M. (1988). Atmosphere protection from industrial pollution: reference book, part 2. Moscow, Metallurgiya Publ., 770.
  3. Sazhin, T. M., Krechun, K. N., Botez, N. (2003). NOx and SO2 retention out of flue gases in electric fields. International applied scientific journal, 4, 193–196.
  4. Straus, V. (1981). Industrial gas cleaning. Moscow, Khimiya Publ., 583.
  5. Hall, D. E., King, D. B., Morgan, T. B. (1998). A review of recent literature investigating of the measurement of automotive particulate; the relationship with environment aerosol, air quality and health effect. Ibid, 982602, 53–65.
  6. Ryzhkov, S. S. (2001). Ship complex installation of clearing oil mixture of water. Proceedings of the third international conference on marine industry, Varna, 2, pp. 285–288.