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FINDING THE BEST SHORTEST PATH ALGORITHM FOR SMART SUITCASE 
 

Abstract. Smart suitcases are a revolutionary new breed of travel accessory that utilize sophisticated 
technology for enhanced convenience and ease of journeying. These suitcases are equipped with a 
multitude of advanced features, such as internet connectivity, infrared sensors, inbuilt algorithms to bypass 
obstacles and an accompanying mobile app designed to track the belongings' owner. A key component lies 
in realizing this technology in the selection of an appropriate algorithm to calculate shortest paths through 
challenging environments. In general, there are four main classes of algorithm that may be considered as 
candidates: Dijkstra's algorithm, A-Star (A*), Bi-Directional A-Star (BiA*) and Rapidly-exploring random 
tree (RRT). Each offers its own advantages and limitations regarding performance, memory requirements 
and accuracy, which must be taken into account if it is to fulfill the purpose effectively. Moreover, these 
smart suitcases boast infrared sensors which allow them detect and avoid obstacles present in their paths 
via infrared sensors that reflect off nearby objects. Base information gathered by the sensors. Then filtered 
through an internal algorithm that distinguishes the best possible method for escape from indicated 
obstacle. Overall, smart suitcases signify a cutting-edge revolutionizing trend likely bound to captivate 
travelers across all types who seek effectiveness and efficiency during embarkment journeys. 
 
Keywords: smart suitcase; shortest path; Dijkstra's algorithm; A-Star; Bi-Directional A-Star;  
Rapidly-exploring random tree 
 

Introduction 

The development of smart suitcase technology has 
opened up many possibilities for travelers, allowing them 
to relish in the convenience and comfort that this new 
style of luggage provides. Of course, one important factor 
of a successful journey is arriving at your destination in 
the most efficient way possible. Finding the best shortest 
path algorithm for these types of suitcases is primary 
task. This paper seeks some existing algorithms used for 
route optimization and propose an ideal approach that 
could be implemented in the latest iterations of smart 
suitcase technology. 

Finding the best shortest path algorithm for a smart 
suitcase has become an important consideration. The 
need to remain agile and efficient in travel is unlikely to 
dissipate any time soon, so having a reliable way of 
navigating from one place to another in the quickest 
possible time is important. There are several algorithms 
that can be used for this purpose. One such example is 
Dijkstra's algorithm. However, it may not necessarily be 
the most suitable approach for certain scenarios due to its 
complexity and applicability only on weighted graphs 
with non-negative weights. Therefore, other options 
should also be taken into account when conducting 

research on distinctive pathfinding techniques that could 
fit even more specific scenarios involving multiple trips 
between various locations. 

Graph search algorithms are one possibility for 
route optimization such as Dijkstra’s shortest path 
algorithm. This method consists of building a connected 
graph based on nodes/locations along with their distances 
apart from each other before traversing it to determine the 
most efficient route depending on user preferences or 
other factors like time or budget constraints. The 
advantage lies in its ability to maximize speed while 
minimizing cost. Despite its effectiveness, this particular 
method can be limited when considering more than two 
dimensions (i.e., factors outside just distance) when 
trying to calculate the best route(s). 

Dijkstra’s algorithm demonstrates the best 
characteristics overall when dealing with larger graphs 
containing non-overlapping regions. On the other hand, 
A-Star (A*) provides effective optimization techniques 
viable under a moderate computational resources’ 
constraint. But it still requires additional heuristics 
incorporated beforehand, either manually or 
automatically via machine learning constructions, to 
generate trajectories accurately and efficiently. 
Otherwise, it will consume an excessive amount of space 
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and energy, potentially affecting battery life negatively 
and significantly, which is not desirable, particularly 
concerning the portability factor. There can be better 
alternatives in the context to avoid such issues arising 
given the possibility that the landscape is uncertain in 
advance and may not be properly handled by the situation 
arising. 

The A-Star Search Algorithm has been a prevalent 
solution among many developers as it combines 
characteristics of both breadth-first search and depth-first 
search while dedicating effort towards achieving optimal 
paths by keeping track of cost associated with each node 
up until its destination point. Furthermore, Bi-Directional 
A-Star Algorithm (BiA*) leverages bidirectional 
searches along with heuristic estimates alongside A-
Star's same principles; eliminating redundant routes and 
staying optimally focused on only those paths deemed 
necessary. Thus, further improving upon the performance 
and accuracy of typical A-Star implementations out there 
that don't always guarantee results due to lack diligence 
or inadvertent overlooks during execution cycles. 
Otherwise, there are mistaken assumptions regarding 
effective navigation sequences. 

Objective of the paper 
Four different algorithms (A*, BiA*, Djikstra’s and 

RRT) are investigated and compared for finding the 
shortest path in the context of a smart suitcase. The paper 
aims to evaluate the effectiveness and performance of 
these algorithms in enabling the smart suitcase to 
navigate efficiently through various environments while 
avoiding obstacles. By conducting a comprehensive 
analysis and comparison of the algorithms, the objective 
is to determine the most suitable algorithm that can be 
employed in the smart suitcase to ensure optimal path 
planning and efficient movement. 

Approach for choosing basic technology  
for creation of smart suitcase 

Let's conduct analysis and make comparison with 
other solutions for smart suitcases. 

The article The Design of Smart Suitcase [1] 
suggests using image recognition to determine the 
distance between a suitcase and a person. If the suitcase 
with a camera detects that the captured image of a person 
is too large, it will perform a slow-down action. 
Moreover, when the target pixel is too large and the 
relative position of the target to the environment remains 
the same, the suitcase will automatically stop to avoid 
collision. Also, a software application is additionally 
used, which can notify about the loss of communication. 

In the article Smart Luggage Carrier system with 
Theft Prevention and Real Time Tracking Using Nano 
Arduino structure [2], it is proposed to use ultrasonic 
sensors that send sound waves, and they will calculate the 
distance between the bag and the person by collecting 
reflected waves when it hits an obstacle. 

The Smart Luggage Carrier article [2] suggests 
using infrared sensors to avoid obstacles. The suitcase 
determines the value of the distance to the object using 
IR sensors. 

The article Smart Airline Baggage Tracking and 
Theft Prevention with Blockchain Technology offers a 
solution for tracking baggage using RFID tags and 
blockchain technology. Intelligent data management 
provides an integrated deployment and monitoring 
service. Collaboration technology is implemented to 
support end-to-end tracking and alerts. 

The article Luggage Theft Identification And Smart 
Lock Using Face Recognition [3] uses facial recognition 
technology to avoid theft. 

In the article [4] unmanned ground vehicle is used 
to detect obstacles such as potholes but the decision of 
avoiding is on operator. 

All these solutions are not automated and they are 
controlled by human. In my future realization I will use 
not only camera to recognize but also one of proposed 
algorithm to avoid obstacles. 

Careful comparison of A*, BiA*,  
Dijkstra’s and RRT algorithms 

Let's examine the selected algorithms in more 
detail. We will delve deeper into their characteristics and 
functionalities. 

Completeness: All four algorithms are complete, 
meaning they will always find a path if one exists. 

Optimality: A*, BiA*, and Dijkstra's algorithms are 
all optimal. It means that they will always find the 
shortest path if one exists. RRT is not optimal, as the path 
it finds may not be the shortest. 

Time Complexity: A*, BiA*, and Dijkstra's 
algorithms have the same worst-case time complexity of 
O(bd), where b is the branching factor and d is the depth 
of the solution. BiA* can be faster than A* and Dijkstra's 
algorithm in some cases, as it searches from both the start 
and target nodes simultaneously, which can reduce the 
number of nodes expanded.  

Space Complexity: A*, BiA*, and Dijkstra's 
algorithms have the same worst-case space complexity of 
O(bd), where b is the branching factor and d is the depth 
of the solution. BiA* requires more space than A* and 
Dijkstra's algorithm because it needs to keep track of 
nodes from both the start and target nodes.  

Use Case: A*, BiA*, and Dijkstra's algorithms are 
best suited for finding paths in static environments, 
where the obstacles do not move frequently. Dijkstra's 
algorithm is especially useful when all edge weights are 
non-negative. RRT is designed for dynamic 
environments, where the obstacles move frequently and 
the path needs to be recalculated often. 

The use case of A* is finding paths in static 
environments. The purpose of BiA* is finding paths in 
static environments, faster than A* in some cases. 
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Djikstra’s algorithm use case is finding paths in 
static environments, when all edge weights are non-
negative. 

RRT is used to sampling-based planning in dynamic 
environments, suitable for high-dimensional spaces. 

Table 1 – Comparison of A*, BiA*,  
Dijkstra’s and RRT algorithms 

Algorithm A* BiA* Dijkstra's RRT 

Completeness Yes Yes Yes Yes 

Optimality Yes Yes Yes No 

Time 
Complexity 

O(bd) O(b(d/2)) O(bd) Varies 

Space 
Complexity 

O(bd) O(bd) O(bd) Varies 

Branching factor is marked as “b”. It’s the average 
number of child nodes for each node in the search tree. 
Depth of the solution is marked as “d”, which is the 
number of steps required to reach the target node from 
the start node. The depth of the solution represents the 
length of the shortest path between the start and target 
nodes in pathfinding problems. “bd” represents the worst-
case time and space complexity for the algorithms. The 
worst-case time complexity refers to the maximum 
amount of time the algorithm may take to find the 
solution, while the worst-case space complexity refers to 
the maximum amount of memory the algorithm may use 
while searching for the solution. 

The time and space complexities can vary for RRT 
algorithm depending on the specific implementation and 
the characteristics of the environment. 

The summarized results are presented in the table 1, 
providing a concise overview of the performance metrics 
of each algorithm. This table allows for easy comparison 
and identification of the algorithm that best meets the 
criteria for optimal pathfinding in a static obstacle 
environment. 

Detailed comparison of A*, BiA*,  
Dijkstra’s and RRT algorithms 

A* is a popular pathfinding algorithm that uses a 
heuristic function to guide its search towards the target 
node. The heuristic function estimates the distance 
between a given node and the target node, and the 
algorithm uses this information to prioritize nodes that 
are closer to the target. A* expands the node with the 
lowest estimated total cost, which is the sum of the actual 
cost from the start node to the current node (known as the 
g-value) and the estimated cost from the current node to 
the target node (known as the h-value). 

A* algorithm operates by exploring the search 
space using a combination of heuristic estimates and cost 
values, aiming to find the most efficient path from the 
start node to the goal node. 

The A* algorithm begins by initializing the open list 
and closed list. The starting node is added to the open list. 
As long as the open list is not empty, the algorithm 
continues to iterate. It selects the node with the lowest f 
cost from the open list, checks if it is the end node, and 
returns the path if so. The current node is then moved 
from the open list to the closed list. For each neighbor of 
the current node, if the neighbor is not traversable or 
already in the closed list, it is skipped. If the neighbor is 
not in the open list, it is added to the open list with its 
parent set to the current node. Otherwise, the algorithm 
checks if the path to the neighbor from the current node 
is shorter than the previous path. If it is, the neighbor's 
parent and f score are updated. If there is no path from 
the start node to the end node, the algorithm returns 
failure. 

Strengths: 
 A* is complete and optimal if the heuristic 

function is admissible and consistent; 
 it can be very efficient in practice, especially if 

the heuristic function is well-designed and the search 
space is not too large; 

 it can be easily modified to handle different 
types of search spaces, such as grids or graphs. 

Weaknesses: 
 A* can be slow if the heuristic function is not 

well-designed or if the search space is too large; 
 it can be memory-intensive if the search space is 

too large, as it stores all of the nodes it expands in 
memory; 

 it is not well-suited for dynamic environments 
where the obstacles move frequently. 

BiA* is a bidirectional version of A* that 
simultaneously searches from both the start node and the 
goal node. The algorithm terminates when the two search 
trees meet in the middle, which means that a path has 
been found. BiA* can be faster than A* in some cases 
because it expands nodes from both ends of the search 
space, which can reduce the number of nodes that need 
to be expanded overall. 

The BiA* algorithm begins by initializing two open 
lists, one for the start node and one for the end node. The 
start node is added to the start open list, and the end node 
is added to the end open list. While both open lists are not 
empty, the algorithm proceeds. It selects the node with 
the lowest f cost from the start open list and checks if it 
is in the end closed list, returning the path if so. The 
current node is then moved from the start open list to the 
start closed list. For each neighbor of the current node, if 
the neighbor is not traversable or already in the start 
closed list, it is skipped. If the neighbor is not in the start 
open list, it is added to the start open list with its parent 
set to the current node. Otherwise, the algorithm checks 
if the path to the neighbor from the current node is shorter 
than the previous path and updates the neighbor's parent 
and f score accordingly. These steps are repeated for the 
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end open list. If there is no path from the start node to the 
end node, the algorithm returns failure. 

Strengths: 
 BiA* is complete and optimal if the heuristic 

function is admissible and consistent; 
 it can be faster than A* in some cases, especially 

if the search space is relatively small or the path is easy 
to find; 

 it can be memory-intensive, but it requires less 
memory than A* because it only needs to store the nodes 
from one search tree at a time. 

Weaknesses: 
 BiA* can be slower than A* in some cases, 

especially if the path is difficult to find or the search 
space is large; 

 it requires more bookkeeping than A* because it 
needs to maintain two separate search trees; 

 like A*, it is not well-suited for dynamic 
environments where the obstacles move frequently. 

Dijkstra's algorithm is a classic pathfinding 
algorithm that finds the shortest path between the start 
node and all other nodes in the search space. It works by 
starting at the start node and iteratively expanding the 
node with the lowest cost. The algorithm stops when it 
reaches the goal node or when all nodes in the search 
space have been explored. 

To find the shortest path using Dijkstra's algorithm, 
the starting node is initialized with a distance of 0 and 
added to the unvisited set. While the unvisited set is not 
empty, the algorithm continues. It selects the node with 
the lowest distance from the unvisited set and checks if it 
is the end node, returning the path if so. The current node 
is then moved from the unvisited set to the visited set. For 
each neighbor of the current node, if the neighbor is not 
traversable or already in the visited set, it is skipped. The 
algorithm calculates the distance from the starting node 
to the neighbor and updates the neighbor's distance if it 
is lower than the current distance. The neighbor's parent 
is set to the current node. If there is no path from the start 
node to the end node, the algorithm returns failure. 

Strengths: 
 Dijkstra's algorithm is complete and optimal if 

all edge weights are non-negative; 
 it can be faster than A* in some cases, especially 

if the heuristic function is not well-designed or the search 
space is relatively small; 

 it is memory-efficient, as it only needs to store 
the nodes that have been expanded. 

Weaknesses: 
 Dijkstra's algorithm can be slow if the search 

space is too large or the heuristic function is well-
designed; 

 it is not well-suited for dynamic environments 
where the obstacles move frequently. 

RRT is a popular algorithm for motion planning in 

dynamic environments, but it sacrifices completeness 
and optimality for the ability to handle complex and 
changing environments. It is commonly used in robotics 
and autonomous systems for generating feasible paths 
considering obstacles and dynamic constraints. 

To execute the Rapidly-exploring Random Trees 
(RRT) algorithm, an empty tree is initialized with the 
start node as the root. While the algorithm is running, it 
randomly samples a point in the search space and 
identifies the nearest node in the tree to that point. The 
algorithm extends the tree by creating a new node from 
the nearest node towards the sampled point, adhering to 
the maximum distance or step size. If the new node is 
collision-free and not within an obstacle, it is added to the 
tree and connected to the nearest node. This process of 
sampling, finding the nearest node, extending the tree, 
and adding nodes continues until the maximum number 
of iterations or a termination condition is met. If the 
termination condition is reached without the goal node 
being reached, the algorithm returns failure. However, if 
the goal node is reached, the path from the goal node to 
the start node is traced by following the connections in 
the tree. Ultimately, the algorithm returns the path from 
the start node to the goal node. 

Strengths: 
 RRT is particularly effective in high-

dimensional and complex search spaces; 
 it can handle dynamic environments where 

obstacles move or change over time; 
 RRT is capable of exploring and adapting to the 

changing environment by constantly expanding the tree; 
 it is well-suited for scenarios where the exact 

goal is not known, as it can explore the search space to 
find potential solutions. 

Weaknesses: 
 RRT is not goal-directed and does not guarantee 

finding the optimal path; 
 it can be computationally expensive in terms of 

time and memory, especially in high-dimensional spaces; 
 the quality of the generated paths highly 

depends on the sampling strategy and the exploration bias; 
 RRT may struggle to find feasible paths in 

cluttered environments with narrow passages or tight 
spaces. 

Future Realization 

1. The autonomous suitcase will consist of a 
Raspberry Pi microcomputer, 2 motors for the wheels, a 
camera, 2 servo motors for turning the wheels and 2 servo 
motors for, as well as additional sensors to determine the 
distance between the suitcase and the user's phone. 

2. You can use infrared or ultrasonic sensors to 
avoid common obstacles - other people, suitcases, etc. 

3. The decision algorithm uses two sensors as a 
reference displacement. The essence of obstacle 
avoidance is how quickly the sensor recognizes that there 



Управління розвитком складних систем (55 – 2023) ISSN 2219-5300 

96 

is an obstacle in front of the suitcase. The decision-
making algorithm method starts with the detection of an 
obstacle by an ultrasonic sensor and calculates the 
distance in front of the suitcase, and we set the minimum 
distance of the drone near the obstacle to be 50 cm.  

4. In addition to obstacle avoidance, the suitcase 
can implement algorithms for finding the shortest path to 
efficiently navigate around obstacles. Some possible 
algorithms include Dijkstra's algorithm, A-Star, Bi-
Directional A-Star and Rapidly-exploring Random Tree 
(RRT). 

5. The minimum distance to the owner and 
bypassing all obstacles when moving in different 
directions. 

Experiment 

To evaluate the performance of different 
pathfinding algorithms in a static environment, we 
conducted a comprehensive experiment using four 
popular algorithms: A*, BiA*, Dijkstra's algorithm, and 
RRT. The goal of the experiment was to compare the 
algorithms' effectiveness in finding optimal paths while 
navigating through a static obstacle environment. 

For this experiment, we implemented the A*, BiA*, 
Dijkstra's, and RRT algorithms using a custom software 
framework developed in Python. The framework 
provided us with the necessary tools and functionality to 
execute the algorithms and analyze their performance. 
In the experiment, each algorithm was provided with the 
same start and goal positions. The task assigned to the 
algorithms was to find the optimal path from the start 
position to the goal position while avoiding static 
obstacles present in the environment. The start and the 
end positions of maze can be found in the next figure. 

 
Figure – The start and the end positions of maze 

To create a realistic scenario, we set up a simulated 
environment using a grid-based map. The map was 
represented as a matrix, where obstacles were marked 
with the value "1" and non-obstacle areas with the value 
"0". This map served as the basis for the algorithms to 
navigate through and find the optimal paths. The 
experiment aimed to provide valuable insights into the 
strengths and weaknesses of each algorithm in a static 
environment. By comparing their performance metrics, 

such as path length, computation time, and efficiency, we 
could determine which algorithm was most suitable for 
real-world applications involving path planning in static 
obstacle environments. 

It's important to note that the focus of the 
experiment was on static obstacles rather than dynamic 
ones. The algorithms were designed to navigate through 
the predefined static obstacles efficiently. 

Additionally, we considered the starting and ending 
points of movement in order to decide on the most 
appropriate algorithm. We recognized that different 
algorithms may excel in different scenarios, and the 
choice of algorithm could depend on factors such as 
computational efficiency, accuracy, and adaptability to 
the environment. 

Results of the experiment 

The experiment provided valuable insights into the 
performance of A*, BiA*, Dijkstra's, and RRT 
algorithms in a static obstacle environment. The findings 
can be used to guide the selection of the most suitable 
algorithm for real-world applications involving path 
planning in similar environments. 

Table 2 – Result of the experiment 

Algorithm Obstacle type Estimated time (sec) 

A* Static 20.26 

BiA* Static 30.46 

Djiksta’s Static 49.96 

RRT Static 130.34 

The results of the experiment can be seen in table 2. 
According to the results of the experiment, the best 
algorithm is A* because it has the least estimated time. 
Also, this algorithm will be used in future realization of 
a smart suitcase. 

Conclusion 

In summary, our research focused on finding the 
best shortest path algorithm for smart suitcases in a static 
obstacle environment. We conducted a comprehensive 
experiment comparing the performance of four popular 
algorithms: A*, BiA*, Dijkstra's, and RRT. The objective 
was to identify the most effective algorithm for guiding 
smart suitcases through obstacle-rich scenarios. 

In this paper, we provided an overview of the 
existing solutions and realizations of smart suitcases. 
Also, each algorithm was described as they were 
implemented as a Python program. 

Furthermore, our research contributes to the broader 
field of pathfinding algorithms by providing empirical 
evidence and comparative analysis of the four algorithms 
in a static obstacle environment. The results offer insights 
into the strengths and limitations of each algorithm, 
which can be valuable for researchers and practitioners 
seeking to optimize path planning in various contexts. 



Інформаційні технології управління 

97 

It is important to note that our study focused 

specifically on a static obstacle environment. Future 

research could explore the performance of these 

algorithms in dynamic and unpredictable obstacle 

scenarios to further enhance the applicability of smart 

suitcases in real-world settings. 

Overall, the outcomes of this study pave the way for 
advancements in smart suitcase technology and 
contribute to the ongoing pursuit of efficient and 
effective path planning algorithms for various 
applications. 

 ____________________________________________________________________________________________  
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ПОШУК НАЙКРАЩОГО АЛГОРИТМУ НАЙКОРОТШОГО ШЛЯХУ ДЛЯ РОЗУМНОЇ ВАЛІЗИ 

 
Анотація. Розумні валізи – це новий революційний вид аксесуарів для подорожей, які використовують сучасні 

технології для підвищення зручності та легкості подорожей. Ці валізи оснащені багатьма сучаснимих функціями, 
такими як підключення до інтернету, інфрачервоні датчики, вбудовані алгоритми для оминання перешкод і супровідний 
мобільний додаток, призначений для відстеження власника речей. Ключовим компонентом у реалізації цієї технології є 
вибір відповідного алгоритму для розрахунку найкоротших шляхів у складних умовах. Отже, вирізняють чотири основні 
класи алгоритмів, які можуть розглядатися як кандидати: алгоритм Дейкстри, алгоритм пошуку A*, двонаправлений 
алгоритм пошуку BiA* та алгоритм швидкозростаючого випадкового дерева. Кожен з них має свої переваги та 
обмеження щодо продуктивності, вимог до пам'яті та точності, які необхідно враховувати для ефективного виконання 
поставленого завдання. Крім того, ці розумні валізи оснащені інфрачервоними сенсорами, які дають змогу їм виявляти й 
обходити перешкоди на своєму шляху за допомогою інфрачервоних датчиків, що відбивають промені від сусідніх об'єктів. 
Базова інформація, зібрана датчиками, потім фільтрується за допомогою внутрішнього алгоритму, який визначає 
найкращий спосіб обходу перешкоди, що є безцінним, коли мова йде про тривалі подорожі. Отже, «розумні» валізи є 
передовою революційною тенденцією, яка, ймовірно, приверне увагу мандрівників усіх типів, які прагнуть до 
ефективності та зручності під час подорожей. 
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