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A METHOD FOR AI-DRIVEN OPTIMIZATION OF FUNCTIONAL ZONING  
IN EDUCATIONAL DEVELOPMENT PROJECTS 

 
Abstract. Traditional management of educational development projects relies heavily on a subjective, 
experience-based approach to spatial planning, which leads to a limited exploration of design alternatives 
and a weak connection between initial decisions and long-term lifecycle performance. This linear process 
lacks a methodical toolkit for navigating the complex trade-offs between cost, functionality, and future 
adaptability under conditions of high uncertainty. To address these limitations, this study develops and 
proposes a method for the AI-optimization of functional zoning in educational development projects. This 
method is based on a structured framework that integrates a Genetic Algorithm with a Multi-Criteria 
Decision Analysis (MCDA) model by formalizing stakeholder requirements into a set of mathematically 
verified and comparable project scenarios. The core of the developed method is a formalized algorithmic 
process that functions as a generative decision support system. The process begins with the digitization of 
project constraints, including building codes, budget limits, and a weighted adjacency graph representing 
the topological requirements between functional zones. The generative engine then initializes a population 
of random layouts and iteratively refines them through the genetic operators of selection, crossover, and 
mutation. The fitness of each candidate is evaluated using an objective function vector that simultaneously 
optimizes three conflicting criteria: (1) minimization of Lifecycle Cost (LCC), which includes both capital 
and operational expenditures; (2) maximization of Functional Utility, measured through student flow 
efficiency and adjacency compliance; and (3) maximization of Adaptability, assessed by the layout’s 
modularity and potential for future expansion. The output of the method is not a single solution but a Pareto 
set, which presents a collection of non-dominated solutions for managerial analysis. The proposed method 
for AI-optimization of functional zoning marks a paradigm shift from conventional, reactive project 
management to a proactive, predictive approach. It is anticipated that this method will enhance the 
effectiveness of decision-making during the pre-investment phase of a development project and provide 
managers with a reliable, evidence-based foundation for selecting the optimal configuration. The practical 
significance of the method lies in the generation of a Pareto set, which enables stakeholders to make 
informed and defensible trade-off decisions among financial, pedagogical, and strategic goals. This 
enhances the project’s digital resilience, minimizes the risks of scope creep and functional obsolescence, 
and ultimately ensures that the capital investment creates a sustainable, efficient, and adaptive educational 
asset. 
 
Keywords: project management; decision support system; genetic algorithm; multi-objective 
optimization; generative design; space layout planning; educational environments 

 

Introduction 
The increasing complexity of modern development 

projects, characterized by intricate design constraints and 
the need for high functional efficiency, has exposed the 
limitations of traditional planning methods. Historically, 
architectural space layout planning relied heavily on the 
intuition and experience of designers, a process often 
criticized for its subjectivity and inability to manage non-
linear variables effectively. A bibliometric analysis of the 
field reveals a significant paradigm shift towards the 
integration of Artificial Intelligence (AI). Zhang and Yu 
classify this evolution into three distinct methodological 

categories: optimization-based, generative, and 
interactive approaches. Their research highlights that 
while generative methods, such as Generative 
Adversarial Networks (GANs), offer novel creative 
possibilities, optimization algorithms are crucial for 
enhancing quantifiable performance metrics, marking a 
transition from experience-based to data-driven design 
decision-making [1]. 

This algorithmic approach allows for the 
transformation of abstract planning problems into 
mathematical optimization functions. For instance, in the 
related domain of urban infrastructure, Liu demonstrates 
the efficacy of combining K-means clustering with 
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improved Genetic Algorithms (GA) to optimize spatial 
layouts. By treating the layout problem as an objective 
function based on supply-demand accessibility, this 
method proves that algorithmic solutions can 
significantly outperform traditional qualitative analysis 
in achieving spatial equity and resource efficiency [2]. 
Such mathematical modeling provides a robust 
framework for balancing cost, distance, and utility, which 
is directly applicable to the functional zoning of complex 
environments. 

Furthermore, effective spatial planning extends 
beyond static geometry to include the dynamic behaviors 
of the environment’s users. Xu et al. emphasize the 
importance of integrating crowd simulation and 
psychological factors into the layout planning process. In 
their study on healthcare facilities, they developed a 
«Low-Trust Social Force Model» to simulate pedestrian 
dynamics and infection risks, subsequently using these 
insights to optimize the spatial configuration. This 
underscores that a comprehensive AI-optimization 
method must not only arrange physical spaces but also 
predict and accommodate the complex flows and 
psychological needs of the occupants, thereby reducing 
congestion and enhancing operational safety [3]. 

In the broader context of construction project 
management, the integration of AI is evolving into 
sophisticated Decision Support Systems (DSS). Smith 
and Wong provide a systematic review indicating that 
while early-stage project prediction dominates the field, 
there is a notable upward trend in using AI for design 
optimization and sustainability assessment. Their 
analysis highlights a critical shift in project success 
criteria: moving beyond the traditional «iron triangle» of 
cost, time, and quality to include broader economic, 
environmental, and social sustainability goals. This 
necessitates the use of hybrid AI models capable of 
handling complex, multi-dimensional data during the 
pre-construction phase, specifically to support decision-
making in environments with high uncertainty [4]. 

Addressing the technical implementation of such 
systems, Nisztuk and Myszkowski propose a functional 
computational tool (ELISi) based on a Hybrid 
Evolutionary Algorithm (HEA). Their work 
demonstrates how the Automated Floor Plan Generation 
(AFPG) problem can be treated as a multi-objective 
optimization task. By utilizing non-sorting genetic 
algorithms (NSGA-II), they illustrate that it is possible to 
generate a Pareto front of solutions that balance 
conflicting design constraints such as topology, room 
adjacency, and compactness. This approach shifts the 
paradigm from manual drafting to selecting from a range 
of mathematically optimized trade-offs, allowing the 
project manager to evaluate the «fitness» of a layout 
against specific project goals [5]. 

However, the successful adoption of these 
algorithmic tools depends heavily on their alignment 

with professional workflows and stakeholder 
expectations. Nisztuk, Kościuk, and Myszkowski 
conducted an extensive survey of practitioners to define 
the guidelines for AFPG software. Their findings reveal 
a strong preference for tools that support the conceptual 
phase without limiting the architect’s control, 
emphasizing that optimization criteria must be 
customizable (e.g., room connectivity, evacuation routes, 
and solar orientation). Crucially, they identify acceptable 
computational timeframes relative to project complexity, 
providing a benchmark for the non-functional 
requirements (NFRs) of any proposed AI-based 
management tool. This highlights that for an AI method 
to be viable in a development project, it must act as an 
intelligent assistant that respects the iterative nature of the 
design process rather than a «black box» generator [6]. 

Beyond the internal configuration of a single 
building, the effectiveness of educational infrastructure 
management is increasingly dependent on spatial 
analysis at the urban scale. Chen et al. utilized Point of 
Interest (POI) data and Geographic Information Systems 
(GIS) to analyze the distribution of educational facilities 
in the Greater Bay Area. Their study reveals significant 
regional disparities, where facility density is highly 
correlated with population size and economic 
development, following a «multi-center clustering» 
pattern. This underscores that for a project management 
methodology to be truly effective, it must incorporate 
geospatial data to address macro-level imbalances and 
ensure equitable resource allocation across diverse urban 
landscapes [7]. 

However, optimizing for spatial distribution and 
functional layout is insufficient without considering the 
long-term environmental impact. The integration of Life 
Cycle Assessment (LCA) into the early stages of Space 
Layout Planning (SLP) is becoming a pivotal 
requirement for sustainable development. Sokhangoo et 
al. argue that specific design parameters such as module 
geometry, material selection, and prefabrication levels 
significantly influence the embodied carbon of modular 
buildings. By identifying these «influencing factors» 
early in the design phase, project managers can shift from 
reactive compliance to proactive carbon minimization. 
This dual focus on spatial efficiency and environmental 
sustainability represents a holistic approach to managing 
the development of educational environments [8]. 

Case studies in developing contexts further 
highlight the gap between theoretical sustainability 
criteria and actual implementation. Arsan’s evaluation of 
a standard primary school project in Turkey demonstrates 
that rigid «type projects» often fail to adapt to local 
climatic and physical conditions, leading to poor energy 
performance and user comfort. This suggests that a one-
size-fits-all approach in project management is 
detrimental to sustainability. Instead, a flexible, site-
specific methodology that integrates ecological design 
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criteria such as natural lighting, orientation, and 
renewable energy integration is essential for creating 
resilient educational buildings [9]. 

The successful implementation of AI-driven 
optimization in development projects is predicated on the 
existence of a robust digital ecosystem. Opara et al. argue 
that digital resilience in construction is not merely a 
technological goal but a strategic necessity achieved 
through the integration of Data Governance, Building 
Information Modelling (BIM), and Real-Time Decision 
Support Systems (RT-DSS). Their research emphasizes 
that without a structured governance framework to 
ensure data integrity and security, the application of 
advanced analytics remains fragmented and unreliable. 
Consequently, any proposed AI optimization method 
must be embedded within a «digital resilience» 
framework that facilitates continuous feedback loops and 
adaptive decision-making throughout the project 
lifecycle [10]. 

This central role of BIM as an integration platform 
is exemplified across various scales of project 
management. At the macro-level of urban planning, 
Honcharenko et al. demonstrate the necessity of a BIM-
concept for the effective design of engineering networks. 
Their research highlights that early-stage integration of 
complex systems within a unified digital model is critical 
for ensuring the long-term functionality and 
sustainability of urban infrastructure [11]. Zooming into 
the micro-level of project execution, Dolhopolov et al. 
propose a multi-stage approach that leverages both AI 
and BIM technology for detailed construction site 
modeling. Their work shows that a well-structured digital 
model serves as the foundation for applying artificial 
intelligence to manage site logistics, monitor progress, 
and ensure compliance, thereby bridging the gap between 
design intent and physical realization [12]. Both studies 
underscore the principle that a robust, data-rich digital 
model is a prerequisite for intelligent project 
management, whether at the scale of a city or a single 
construction site. 

However, the optimization of educational spaces 
cannot rely solely on generative algorithms; it must 
strictly adhere to physical and safety constraints. Hassan 
et al. highlight the critical importance of structural 
analysis in the design of primary school buildings, 
particularly in seismically active regions. Their 
comparative analysis of structural models reveals that the 
configuration of the floor plan specifically the 
arrangement of columns and beams directly impacts the 
building’s lateral displacement and drift ratios. This 
suggests that an effective AI-based zoning method for 
educational facilities must incorporate structural 
performance metrics and safety codes (such as BNBC 
and ASCE) as fundamental constraints to ensure that the 
generated layouts are not only functionally efficient but 
also structurally resilient and cost-effective [13]. 

In the broader context of construction management, 
Intelligent Decision Support Systems (IDSS) are 
emerging as essential tools for handling «Big Data» and 
navigating complex project environments. Evstratov 
proposes a unified IDSS architecture that integrates data 
collection, mining, and predictive modeling layers. His 
work on monolithic construction demonstrates how 
multivariate regression models within an IDSS can 
evaluate the economic feasibility of resuming suspended 
projects by analyzing factors such as technical condition, 
weather impact, and resource availability. This highlights 
the capacity of intelligent systems to process multi-
threaded data streams and support strategic decision-
making in scenarios with high uncertainty [14]. 

However, the adoption of such AI-driven systems 
in professional practice is often hindered by the «black 
box» nature of complex algorithms. Love et al. argue that 
for AI to be truly effective in construction management, 
it must be explainable. They introduce a «means-end 
framework» for Explainable Artificial Intelligence 
(XAI), emphasizing that Decision Support Systems must 
provide «Meaningful Human Explanations» (MHEs). 
Their review indicates that simply generating an optimal 
layout is insufficient; the system must also provide 
evidence-based justifications such as feature importance 
or counterfactual scenarios to build trust and enable end-
users (project managers) to validate the AI’s 
recommendations against their professional judgment 
and domain knowledge [15]. 

Main Research 
The traditional approach to managing development 

projects in the educational sector is characterized by a 
significant discontinuity between the definition of 
stakeholder requirements and the spatial materialization 
of these requirements. In conventional practice, the 
project manager operates with abstract constraints 
regarding budget, capacity, and functional zoning, while 
the architect translates these into a limited number of 
static layout alternatives based on heuristic experience. 
This linear process often leads to suboptimal decisions 
where the full impact of spatial configuration on the 
project’s lifecycle cost and functional utility remains 
obscure until the detailed design or even operation phase. 
To address this structural inefficiency, this study 
proposes a formal method for iterative multi-objective 
optimization of the functional-spatial configuration of 
educational environments. The proposed method 
operates as a cybernetic decision support system that 
transforms unstructured or semi-structured project 
requirements into a set of mathematically verified 
implementation scenarios. 

The fundamental logic of the proposed method is 
visualized in Figure 1, which illustrates the 
transformation of the project lifecycle from the initiation 
of requirements to the final managerial decision.  
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Figure 1 – Algorithmic Model  

of the Proposed Optimization Method 

The framework is structurally divided into three 
distinct but interconnected cognitive spaces: the Problem 
Space, the Solution Space, and the Decision Space. In the 
Problem Space, the primary objective is the formalization 
of the project brief. Unlike traditional management, 
where requirements are often treated as static text-based 
directives, this method treats requirements as a dynamic 
set of mathematical constraints and input vectors. 

The core transformation occurs within the Solution 
Space, where the generative engine operates. Instead of 
manually drafting a single solution, the system utilizes an 
evolutionary algorithm to explore the vast combinatorial 
landscape of possible spatial configurations. This 
generative phase does not aim to produce a single 
«correct» layout but rather to evolve a population of 
potential layouts that progressively adapt to the 
predefined fitness functions. The algorithmic logic 
ensures that every generated candidate is rigorously 
tested against the defined constraints, filtering out non-
viable options before they consume managerial attention. 

This process effectively shifts the project 
management focus from correcting errors in manual 
designs to defining the performance criteria that drive the 
automated generation of designs. 

Finally, the Decision Space represents the interface 
between the computational output and the project 
manager’s strategic judgment. The output of the 
optimization process is not a single master plan, but a 
Pareto Optimal Frontier – a set of trade-off solutions 
where no single objective can be improved without 
compromising another. This approach aligns with the 
principles of value engineering, as it forces the project 
manager to make explicit trade-offs between conflicting 
goals, such as capital expenditure versus operational 
efficiency or compactness versus functional flexibility. 
By presenting a range of optimized scenarios, the 
Decision Support System empowers the manager to 
select a configuration that best aligns with the specific 
strategic priorities of the educational institution, ensuring 
that the final approved master plan is both scientifically 
optimized and strategically valid. 

The practical implementation of the proposed 
method requires a rigorous approach to data structuring, 
where the physical attributes of an educational facility are 
abstracted into computable units. The initial phase of the 
algorithm involves the decomposition of the project 
scope into a granular list of functional zones. Each zone 
is treated as an object with specific attributes, including 
required area, aspect ratio preferences, natural lighting 
requirements, and acoustic isolation needs. This object-
oriented approach allows the project manager to 
manipulate the project scope at a parametric level. For 
instance, a change in the educational model from 
traditional classrooms to open-plan learning clusters does 
not require a manual redesign of the layout but simply an 
adjustment of the parameters within the input vector. 
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A critical component of the input architecture is the 
formalization of topological relationships between these 
functional zones. In educational projects, the efficiency 
of the facility is largely determined by the logical 
adjacency of related spaces. To quantify this, the method 
utilizes a weighted Adjacency Graph, where nodes 
represent rooms or zones, and edges represent the 
required strength of the connection between them. These 
connections are assigned numerical weights ranging from 
mandatory proximity, such as the link between a kitchen 
and a dining hall, to mandatory separation, such as the 
distance between a noisy gymnasium and a quiet library. 
This graph serves as the primary genotype for the 
generative algorithm, guiding the spatial arrangement 
process to minimize the weighted distance between 
interacting zones. 

Furthermore, the input data structure incorporates a 
comprehensive set of financial and physical constraints. 
The budget constraint is not treated merely as a final cap 
on the cost but as a dynamic variable that influences the 
geometric compactness of the generated layouts. 
Similarly, the site boundaries are digitized into a polygon 
that acts as a hard geometric limit for the generative 
engine. Table 1 summarizes the classification of input 
parameters utilized by the system, categorizing them into 
geometric, topological, and economic variables. This 
structured data input ensures that the subsequent 
evolutionary process is grounded in the specific realities 
of the project context, preventing the generation of 
theoretically optimal but practically unfeasible solutions. 

The central computational mechanism of the 
proposed method is built upon a non-dominated sorting 
genetic algorithm, specifically adapted for spatial 
topology optimization. The logic of this generative 
engine follows a cyclical evolutionary process, designed 
to mimic the principles of natural selection to iteratively 
improve the quality of spatial layouts. As illustrated in 
Figure 2, the workflow initiates with the generation of an 
initial population of random layouts. At this nascent 
stage, the system places functional zones within the 
defined site boundaries in a stochastic manner, ensuring 
only that they do not overlap physically. While these 
initial candidates are functionally rudimentary and likely 
suboptimal, they provide the necessary genetic diversity 
required for the subsequent evolutionary exploration of 
the solution space. 

Once the initial population is established, the 
system enters the primary evolutionary optimization 
loop. This continuous cycle is the engine that drives the 
transition from chaos to order. The process begins with 
the evaluation of each candidate layout against the 
defined fitness functions, which quantify the 
performance of the design across multiple dimensions 
such as cost and utility. Crucially, before a layout is 
assigned a performance score, it must pass through a 
rigorous constraint verification module. As depicted in 

Figure 3, this module acts as a gatekeeper, checking each 
generated solution against hard constraints derived from 
building codes and safety regulations. 

 

 
Figure 2 – Conceptual Model  

of the Method’s Implementation 
 
If a layout violates critical parameters, for example, 

by blocking an emergency evacuation route or failing to 
meet minimum daylight requirements it is not 
immediately discarded but is instead heavily penalized. 
This penalty function significantly reduces the 
candidate’s likelihood of being selected for reproduction, 
thereby steering the evolutionary drift away from non-
compliant regions of the search space while maintaining 
the genetic material that might be useful in future 
generations. 
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Table 1 – Classification of Input Parameters for the Generative Model 
Parameter 
Category 

Variable 
Name Description Role in Optimization 

Geometric 
Scope 

Stotal Total allowable gross floor area Defines the maximum buildable volume 
limit 

ARzone Aspect Ratio constraints per zone Ensures room shapes remain functional (not 
too narrow) 

Topology 
Wij Adjacency Weight Quantifies the necessity of proximity 

between zone i and j 

Gsite Site Boundary Polygon Acts as a hard geometric constraint for the 
building footprint 

Economic 
Cunit Unit construction cost Used to calculate CAPEX estimates for each 

candidate 

Blimit Total Investment Budget Threshold value for filtering economically 
unviable options 

Pedagogical Nstudents Maximum student capacity Determines the required width of corridors 
and evacuation routes 

 
Figure 3 – Decision Model for the Multi-Criteria  

Evaluation of Optimized Scenarios 

The mechanism for creating new, potentially better 
layouts relies on genetic operations applied to the 
selected «parent» designs. Figure 4 provides a detailed 
decomposition of this generative logic. The process 
begins with the selection phase, where layouts with 
superior fitness scores are chosen to fill the mating pool. 

 
Figure 4 – Data Model of the Method’s Core  

Components in UML Format 
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The algorithm then applies a crossover operator, 
which acts as a recombination mechanism. In the context 
of spatial planning, crossover involves swapping clusters 
of functional zones between two parent layouts. For 
instance, an efficient classroom wing from one layout 
might be combined with a compact administrative core 
from another, theoretically producing an offspring that 
inherits the strengths of both parents. This recombination 
allows the system to exploit known good configurations 
and propagate them through the population. 

However, relying solely on crossover can lead to 
premature convergence, where the algorithm gets stuck 
in a local optimum – a «good enough» solution that is not 
truly the best possible outcome. To prevent this, the 
method incorporates a mutation operator, which 
introduces random variations into the offspring. As 
shown in the logic flow of Figure 4, mutation occurs with 
a specific probability and involves stochastic 
modifications such as shifting a wall position, rotating a 
room, or swapping the functions of two adjacent zones.  

 
Figure 5 – Model of the Constraint Handling Algorithm  

for Layout Validation 

From a project management perspective, mutation 
represents the innovative element of the design process, 
allowing the system to test unconventional 
configurations that a human designer might not 
intuitively consider. These genetic operations (selection, 
crossover, and mutation) are repeated over hundreds of 
generations. With each iteration, the population of 
layouts becomes increasingly refined, gradually 
converging towards a set of optimized solutions that 
balance the conflicting objectives of the project. 

The efficacy of an evolutionary algorithm is 
fundamentally dependent on its ability to accurately 
measure the «fitness» or quality of each candidate 
solution. In the context of this method, fitness is not a 
monolithic score but a multi-dimensional vector 
representing the project’s performance against a set of 
conflicting managerial objectives. This multi-objective 
approach is critical for educational projects, where 
success is defined by a complex interplay of economic 
viability, functional effectiveness, and long-term 
adaptability. The method employs a set of three distinct 
objective functions often referred to as fitness functions 
to guide the optimization process. As illustrated in the 
fitness evaluation sub-system diagram (Figure 5), each 
layout generated by the algorithm is systematically 
deconstructed and assessed against these three core 
criteria. The resulting vector of scores provides a 
nuanced performance profile, allowing for a comparative 
analysis that goes beyond simplistic, single-metric 
evaluations. 

The first objective function, F1, is designed to 
quantify the economic performance of each layout. 
Moving beyond the traditional project management focus 
on initial capital expenditure (CAPEX), this function 
adopts a lifecycle cost (LCC) perspective. The algorithm 
estimates the CAPEX by calculating the total quantity of 
primary construction materials required. This is achieved 
by measuring the aggregate length of all internal and 
external walls and the total floor area of each candidate 
design. Layouts with a higher degree of geometric 
compactness and a lower ratio of circulation space (e.g., 
corridors) to functional space (e.g., classrooms) naturally 
require fewer materials, resulting in a more favorable 
CAPEX score. 

Furthermore, the function incorporates an 
estimation of long-term operational expenditure (OPEX), 
primarily focusing on energy consumption for heating 
and cooling. This is calculated by analyzing the 
building’s form factor – the ratio of its external surface 
area to its enclosed volume. A layout with a more 
compact, regularized form has a lower surface area 
through which thermal energy can be lost, leading to 
lower projected energy costs over the building’s 
operational life. By integrating both CAPEX and OPEX 
into a single economic objective, the algorithm provides 
a holistic financial assessment that aligns with the 
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principles of total cost of ownership. This empowers the 
project manager to make decisions that are not only cost-
effective at the construction stage but also financially 
sustainable throughout the facility’s lifecycle. 

The second objective function, F2, measures the 
functional effectiveness of the spatial configuration, 
directly addressing the question of how well the building 
will serve its primary users – students and staff. This 
function translates the pedagogical and operational 
requirements of the educational environment into a 
quantifiable utility score. A primary component of this 
score is derived from a student flow analysis. The 
algorithm simulates the typical daily movement patterns 
of students between key functional zones, such as the 
main entrance, classrooms, library, and cafeteria. By 
calculating the total aggregated walking distance for 
these common pathways, the system can objectively 
assess the logistical efficiency of a layout. Designs that 
minimize these distances are rewarded with a higher 
utility score, as they reduce transition times and create a 
more seamless educational experience. 

 
Figure 6 – Model of the Generative Algorithm: Selection, 

Crossover, and Mutation 
 
This data-driven approach ensures that the 

generated layouts are not just geometrically plausible but 
are also logically coherent and aligned with the 
operational needs of the institution, thereby managing the 
project’s quality and scope requirements at a 
fundamental level. The class diagram in Figure 6 
illustrates this structure, where the UtilityObjective class 
encapsulates these evaluation methods. 

The third objective function, F3, introduces a 
strategic, forward-looking dimension to the evaluation 
process by assessing the layout’s adaptability and 
resilience to future changes. Educational paradigms and 
student populations are dynamic, and a building designed 
for today’s needs may become obsolete within a decade. 
This function quantifies a layout’s «future-proofing» 
potential, ensuring that the project delivers a long-term 
strategic asset. One of the key metrics for this objective 
is zoning modularity. The algorithm analyzes the 
structural grid of the layout, rewarding designs that 
utilize a regular, modular grid and minimize the number 
of internal load-bearing walls. Such configurations offer 
greater flexibility for future reconfiguration, allowing, 
for example, two smaller classrooms to be easily 
combined into a larger collaborative learning space with 
minimal structural intervention. 

 
Figure 7 – Model of the Multi-Objective  

Fitness Evaluation Function 
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The final output of the generative optimization 
process is fundamentally different from that of traditional 
design methods. Instead of delivering a single, 
prescriptive «best» solution, the algorithm generates a 
Pareto Optimal Frontier. This frontier represents a 
curated set of non-dominated solutions, where each point 
on the frontier corresponds to a unique and fully detailed 
spatial layout. A solution is considered non-dominated if 
it is impossible to improve its performance in one 
objective function (e.g., reducing lifecycle cost) without 
incurring a performance penalty in at least one other 
objective (e.g., decreasing functional utility). From a 
project management perspective, this set of solutions 
serves as a strategic map of the decision landscape, 
transforming the abstract challenge of balancing 
competing project objectives into a tangible and 
explorable set of data-driven alternatives. 

Each point on this frontier represents a distinct 
trade-off. For instance, one solution might offer the 
lowest possible construction cost by utilizing a highly 
compact building form with minimal circulation space, 
but this may come at the expense of lower functional 
utility due to longer internal travel distances or less 
daylight access. Conversely, another solution might 
achieve a near-perfect utility score by prioritizing short 
travel paths and optimal room adjacencies, but at the cost 
of a 20% increase in the estimated budget due to a more 
complex and materially intensive building footprint. 

The existence of a Pareto Optimal Frontier, while 
computationally elegant, presents a new challenge for the 
project manager: how to select the single best 
configuration from a set of equally optimal – albeit 
different – alternatives. This selection process cannot be 
arbitrary; it must be guided by a structured framework 
that aligns the quantitative outputs of the AI with the 
qualitative strategic goals of the organization. As 
illustrated in the decision logic diagram (Figure 7), the 
proposed method incorporates a multi-criteria decision 
analysis (MCDA) framework to facilitate this final 
selection. 

This framework acts as a critical bridge between the 
data-driven solution space generated by the algorithm 
and the value-driven decision space inhabited by project 
stakeholders. The MCDA process formalizes what is 
often an intuitive or unstructured debate, providing a 
systematic methodology for weighing the strategic 
importance of various performance indicators. It 
acknowledges that the «best» solution is not an absolute, 
mathematical truth but is contingent upon the specific 
priorities of the educational institution. For example, a 
publicly funded community school might prioritize long-
term operational cost savings and durability, while a 
private, specialized academy may place a higher 
premium on functional layouts that support a unique 
pedagogical model, even at a higher initial cost. This 
structured evaluation ensures that the final selection is 

not merely a preference but a defensible decision aligned 
with the core mission and business case of the project. 

The evaluation within this framework is structured 
around three primary pillars of managerial concern, 
which extend beyond the algorithm’s core fitness 
functions. The first pillar is Financial Feasibility, which 
moves beyond the simple LCC calculation to assess each 
scenario’s alignment with the investor’s financial 
strategy, including cash flow projections, potential for 
phased implementation, and overall return on investment 
(ROI). The second pillar, Strategic Alignment, evaluates 
how effectively each layout supports the institution’s 
pedagogical vision and brand identity. This qualitative 
assessment considers factors such as the potential to 
foster collaborative learning, the quality of student 
experience, and the building’s capacity to attract and 
retain faculty and students. The third pillar, Risk Profile, 
provides a holistic risk assessment for each scenario, 
considering not only technical risks like construction 
complexity but also market risks, regulatory hurdles, and 
potential community opposition. 

Conclusions 
This study addressed the inherent subjectivity and 

limitations of traditional, experience-based approaches in 
the project management of educational facility 
development. Conventional methods restrict the 
exploration of design alternatives and fail to provide a 
clear, evidence-based link between spatial configurations 
and long-term performance indicators. To overcome 
these challenges, this paper introduced and detailed a 
formal method for the AI-driven, multi-objective 
optimization of functional-spatial layouts. The proposed 
framework, built upon a Genetic Algorithm, successfully 
transforms abstract project requirements into a tangible 
set of mathematically validated, Pareto-optimal 
scenarios, thereby objectifying the critical pre-
investment phase of project management. 

The principal finding of this research is that the 
generative optimization approach provides a paradigm 
shift from a reactive to a proactive and predictive 
management model. By simultaneously evaluating 
candidate layouts against conflicting criteria of lifecycle 
cost, functional utility, and adaptability, the method 
externalizes the complex trade-offs inherent in any 
development project. The generation of a Pareto Optimal 
Frontier empowers the project manager to move beyond 
the role of a passive decision-approver to that of a 
strategic decision-maker. This enables a data-driven 
dialogue with stakeholders, where choices between 
different high-performance scenarios can be justified 
based on their alignment with the organization’s 
financial, pedagogical, and long-term strategic goals. 
Consequently, the method serves as a powerful tool for 
value engineering and risk mitigation, enhancing the 
project’s digital resilience against future uncertainties. 
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The scientific contribution of this work lies in 
bridging the gap between computational design and 
project management theory. By formalizing the 
architectural design problem as a multi-objective 
optimization task within a managerial decision-making 
context, the proposed method provides an actionable 
framework for implementing principles of systems 
thinking and digital twin concepts at the earliest stages of 
the project lifecycle. This structured approach ensures 
traceability and defensibility in decision-making, 
transforming the «art» of layout planning into a more 
rigorous «science» of spatial configuration management. 
However, the proposed method has several limitations 
that must be acknowledged. Firstly, the efficacy of the 
algorithm is fundamentally contingent upon the quality 
and accuracy of the input data, including the 
formalization of the adjacency matrix and constraint 
parameters. Inaccurate or incomplete inputs will 
inevitably lead to suboptimal outputs (GIGO principle). 

Secondly, the current model does not incorporate 
qualitative or aesthetic criteria, which remain a critical 
component of architectural design. The role of the human 
architect is therefore not eliminated but transformed into 
that of a «curator» and «parameter tuner» who guides the 
AI towards aesthetically and culturally appropriate 
solutions. Lastly, the framework presented is conceptual 
and has been validated through simulation; its 
performance in a live, large-scale project environment is 
yet to be empirically tested. 

Future research should focus on addressing these 
limitations through three primary avenues. First, 
empirical validation of the method through a real-world 
case study is essential to quantify its practical benefits 
against traditional design processes. Second, the model 
should be extended to incorporate more complex 
constraints, such as structural engineering requirements, 
detailed energy simulations, and human behavior models. 

 
 ____________________________________________________________________________________________  
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МЕТОД AI-ОПТИМІЗАЦІЇ ФУНКЦІОНАЛЬНОГО ЗОНУВАННЯ  

В ДЕВЕЛОПЕРСЬКИХ ПРОЄКТАХ ОСВІТНІХ СЕРЕДОВИЩ 
 

Анотація. Традиційне управління девелоперськими проєктами освітніх середовищ значною мірою спирається на 
суб’єктивний, базований на досвіді підхід до просторового планування, що призводить до обмеженого дослідження 
альтернативних рішень та слабкого зв’язку між початковими рішеннями та довгостроковими показниками життєвого 
циклу. Такий лінійний процес не має методичного інструментарію для навігації складними компромісами між вартістю, 
функціональністю та майбутньою адаптивністю в умовах високої невизначеності. Для розв’язання цих обмежень у 
дослідженні розроблено та запропоновано метод AI-оптимізації функціонального зонування в девелоперських проєктах 
освітніх середовищ. Цей метод базується на структурованій моделі, що інтегрує генетичний алгоритм з моделлю 
багатокритеріального аналізу (англ. Multi-Criteria Decision Analysis, MCDA) шляхом формалізації вимог стейкхолдерів у 
набір математично верифікованих і порівнянних сценаріїв проєкту. Ядром розробленого методу є формалізований 
алгоритмічний процес, що функціонує як генеративна система підтримки прийняття рішень. Процес починається з 
цифровізації проєктних обмежень, включаючи будівельні норми, бюджетні ліміти та зважений граф суміжності, що 
представляє топологічні вимоги між функціональними зонами. Потім генеративний рушій ініціалізує популяцію 
випадкових планувань та ітеративно вдосконалює їх за допомогою генетичних операторів селекції, кросоверу та 
мутації. Пристосованість кожного кандидата оцінюється за допомогою векторної функції, яка одночасно оптимізує 
три конфліктні критерії: (1) мінімізацію вартості життєвого циклу (англ. Lifecycle Cost, LCC), що враховує капітальні 
та операційні витрати; (2) максимізацію функціональної корисності, що вимірюється через ефективність потоків 
студентів та дотримання суміжності; (3) максимізацію адаптивності, що оцінюється за модульністю та потенціалом 
для майбутнього розширення. Результатом роботи методу є не єдине рішення, а множина Парето, що представляє 
набір недомінованих рішень для управлінського аналізу. Запропонований метод AI-оптимізації функціонального зонування 
знаменує парадигмальний зсув від конвенційного, реактивного управління проєктами до проактивного, предиктивного 
підходу. Передбачається, що він підвищить ефективність прийняття управлінських рішень на передінвестиційній фазі 
девелоперського проєкту та надасть менеджерам надійну, доказову основу для вибору оптимальної конфігурації. 
Практична значущість методу полягає в тому, що генерація множини Парето дає змогу стейкхолдерам приймати 
обґрунтовані та захищені компромісні рішення між фінансовими, педагогічними та стратегічними цілями. Це підвищує 
цифрову стійкість проєкту, мінімізує ризики розповзання змісту та функціонального старіння, та в кінцевому підсумку 
гарантує, що капітальні інвестиції створюють стійкий, ефективний та адаптивний освітній актив. 
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