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A METHOD FOR AI-DRIVEN OPTIMIZATION OF FUNCTIONAL ZONING

IN EDUCATIONAL DEVELOPMENT PROJECTS

Abstract. Traditional management of educational development projects relies heavily on a subjective,
experience-based approach to spatial planning, which leads to a limited exploration of design alternatives
and a weak connection between initial decisions and long-term lifecycle performance. This linear process
lacks a methodical toolkit for navigating the complex trade-offs between cost, functionality, and future
adaptability under conditions of high uncertainty. To address these limitations, this study develops and
proposes a method for the Al-optimization of functional zoning in educational development projects. This
method is based on a structured framework that integrates a Genetic Algorithm with a Multi-Criteria
Decision Analysis (MCDA) model by formalizing stakeholder requirements into a set of mathematically
verified and comparable project scenarios. The core of the developed method is a formalized algorithmic
process that functions as a generative decision support system. The process begins with the digitization of
project constraints, including building codes, budget limits, and a weighted adjacency graph representing
the topological requirements between functional zones. The generative engine then initializes a population
of random layouts and iteratively refines them through the genetic operators of selection, crossover, and
mutation. The fitness of each candidate is evaluated using an objective function vector that simultaneously
optimizes three conflicting criteria: (1) minimization of Lifecycle Cost (LCC), which includes both capital
and operational expenditures; (2) maximization of Functional Utility, measured through student flow
efficiency and adjacency compliance; and (3) maximization of Adaptability, assessed by the layout’s
modularity and potential for future expansion. The output of the method is not a single solution but a Pareto
set, which presents a collection of non-dominated solutions for managerial analysis. The proposed method
for Al-optimization of functional zoning marks a paradigm shift from conventional, reactive project
management to a proactive, predictive approach. It is anticipated that this method will enhance the
effectiveness of decision-making during the pre-investment phase of a development project and provide
managers with a reliable, evidence-based foundation for selecting the optimal configuration. The practical
significance of the method lies in the generation of a Pareto set, which enables stakeholders to make
informed and defensible trade-off decisions among financial, pedagogical, and strategic goals. This
enhances the project’s digital resilience, minimizes the risks of scope creep and functional obsolescence,
and ultimately ensures that the capital investment creates a sustainable, efficient, and adaptive educational
asset.

Keywords: project management; decision support system; genetic algorithm; multi-objective
optimization; generative design; space layout planning; educational environments

categories:  optimization-based,  generative, and
interactive approaches. Their research highlights that
while methods, such as Generative

Introduction

The increasing complexity of modern development
projects, characterized by intricate design constraints and
the need for high functional efficiency, has exposed the
limitations of traditional planning methods. Historically,
architectural space layout planning relied heavily on the
intuition and experience of designers, a process often
criticized for its subjectivity and inability to manage non-
linear variables effectively. A bibliometric analysis of the
field reveals a significant paradigm shift towards the
integration of Artificial Intelligence (AI). Zhang and Yu
classify this evolution into three distinct methodological

generative
Adversarial Networks (GANSs), offer novel creative
possibilities, optimization algorithms are crucial for
enhancing quantifiable performance metrics, marking a
transition from experience-based to data-driven design
decision-making [1].

This algorithmic approach allows for the
transformation of abstract planning problems into
mathematical optimization functions. For instance, in the
related domain of urban infrastructure, Liu demonstrates
the efficacy of combining K-means clustering with
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improved Genetic Algorithms (GA) to optimize spatial
layouts. By treating the layout problem as an objective
function based on supply-demand accessibility, this
method proves that algorithmic solutions can
significantly outperform traditional qualitative analysis
in achieving spatial equity and resource efficiency [2].
Such mathematical modeling provides a robust
framework for balancing cost, distance, and utility, which
is directly applicable to the functional zoning of complex
environments.

Furthermore, effective spatial planning extends
beyond static geometry to include the dynamic behaviors
of the environment’s users. Xu et al. emphasize the
importance of integrating crowd simulation and
psychological factors into the layout planning process. In
their study on healthcare facilities, they developed a
«Low-Trust Social Force Model» to simulate pedestrian
dynamics and infection risks, subsequently using these
insights to optimize the spatial configuration. This
underscores that a comprehensive Al-optimization
method must not only arrange physical spaces but also
predict and accommodate the complex flows and
psychological needs of the occupants, thereby reducing
congestion and enhancing operational safety [3].

In the broader context of construction project
management, the integration of Al is evolving into
sophisticated Decision Support Systems (DSS). Smith
and Wong provide a systematic review indicating that
while early-stage project prediction dominates the field,
there is a notable upward trend in using Al for design
optimization and sustainability assessment. Their
analysis highlights a critical shift in project success
criteria: moving beyond the traditional «iron triangle» of
cost, time, and quality to include broader economic,
environmental, and social sustainability goals. This
necessitates the use of hybrid Al models capable of
handling complex, multi-dimensional data during the
pre-construction phase, specifically to support decision-
making in environments with high uncertainty [4].

Addressing the technical implementation of such
systems, Nisztuk and Myszkowski propose a functional
computational tool (ELISi) based on a Hybrid
Evolutionary ~ Algorithm  (HEA).  Their = work
demonstrates how the Automated Floor Plan Generation
(AFPG) problem can be treated as a multi-objective
optimization task. By utilizing non-sorting genetic
algorithms (NSGA-II), they illustrate that it is possible to
generate a Pareto front of solutions that balance
conflicting design constraints such as topology, room
adjacency, and compactness. This approach shifts the
paradigm from manual drafting to selecting from a range
of mathematically optimized trade-offs, allowing the
project manager to evaluate the «fitness» of a layout
against specific project goals [5].

However, the successful adoption of these
algorithmic tools depends heavily on their alignment

with  professional workflows and stakeholder
expectations. Nisztuk, Kosciuk, and Myszkowski
conducted an extensive survey of practitioners to define
the guidelines for AFPG software. Their findings reveal
a strong preference for tools that support the conceptual
phase without limiting the architect’s control,
emphasizing that optimization criteria must be
customizable (e.g., room connectivity, evacuation routes,
and solar orientation). Crucially, they identify acceptable
computational timeframes relative to project complexity,
providing a benchmark for the non-functional
requirements (NFRs) of any proposed Al-based
management tool. This highlights that for an AI method
to be viable in a development project, it must act as an
intelligent assistant that respects the iterative nature of the
design process rather than a «black box» generator [6].

Beyond the internal configuration of a single
building, the effectiveness of educational infrastructure
management is increasingly dependent on spatial
analysis at the urban scale. Chen et al. utilized Point of
Interest (POI) data and Geographic Information Systems
(GIS) to analyze the distribution of educational facilities
in the Greater Bay Area. Their study reveals significant
regional disparities, where facility density is highly
correlated with population size and economic
development, following a «multi-center clustering»
pattern. This underscores that for a project management
methodology to be truly effective, it must incorporate
geospatial data to address macro-level imbalances and
ensure equitable resource allocation across diverse urban
landscapes [7].

However, optimizing for spatial distribution and
functional layout is insufficient without considering the
long-term environmental impact. The integration of Life
Cycle Assessment (LCA) into the early stages of Space
Layout Planning (SLP) is becoming a pivotal
requirement for sustainable development. Sokhangoo et
al. argue that specific design parameters such as module
geometry, material selection, and prefabrication levels
significantly influence the embodied carbon of modular
buildings. By identifying these «influencing factors»
early in the design phase, project managers can shift from
reactive compliance to proactive carbon minimization.
This dual focus on spatial efficiency and environmental
sustainability represents a holistic approach to managing
the development of educational environments [8].

Case studies in developing contexts further
highlight the gap between theoretical sustainability
criteria and actual implementation. Arsan’s evaluation of
a standard primary school project in Turkey demonstrates
that rigid «type projects» often fail to adapt to local
climatic and physical conditions, leading to poor energy
performance and user comfort. This suggests that a one-
size-fits-all approach in project management is
detrimental to sustainability. Instead, a flexible, site-
specific methodology that integrates ecological design
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criteria such as natural lighting, orientation, and
renewable energy integration is essential for creating
resilient educational buildings [9].

The successful implementation of Al-driven
optimization in development projects is predicated on the
existence of a robust digital ecosystem. Opara et al. argue
that digital resilience in construction is not merely a
technological goal but a strategic necessity achieved
through the integration of Data Governance, Building
Information Modelling (BIM), and Real-Time Decision
Support Systems (RT-DSS). Their research emphasizes
that without a structured governance framework to
ensure data integrity and security, the application of
advanced analytics remains fragmented and unreliable.
Consequently, any proposed Al optimization method
must be embedded within a «digital resilience»
framework that facilitates continuous feedback loops and
adaptive decision-making throughout the project
lifecycle [10].

This central role of BIM as an integration platform
is exemplified across various scales of project
management. At the macro-level of urban planning,
Honcharenko et al. demonstrate the necessity of a BIM-
concept for the effective design of engineering networks.
Their research highlights that early-stage integration of
complex systems within a unified digital model is critical
for ensuring the long-term functionality and
sustainability of urban infrastructure [11]. Zooming into
the micro-level of project execution, Dolhopolov et al.
propose a multi-stage approach that leverages both Al
and BIM technology for detailed construction site
modeling. Their work shows that a well-structured digital
model serves as the foundation for applying artificial
intelligence to manage site logistics, monitor progress,
and ensure compliance, thereby bridging the gap between
design intent and physical realization [12]. Both studies
underscore the principle that a robust, data-rich digital
model is a prerequisite for intelligent project
management, whether at the scale of a city or a single
construction site.

However, the optimization of educational spaces
cannot rely solely on generative algorithms; it must
strictly adhere to physical and safety constraints. Hassan
et al. highlight the critical importance of structural
analysis in the design of primary school buildings,
particularly in seismically active regions. Their
comparative analysis of structural models reveals that the
configuration of the floor plan specifically the
arrangement of columns and beams directly impacts the
building’s lateral displacement and drift ratios. This
suggests that an effective Al-based zoning method for
educational facilities must incorporate structural
performance metrics and safety codes (such as BNBC
and ASCE) as fundamental constraints to ensure that the
generated layouts are not only functionally efficient but
also structurally resilient and cost-effective [13].

In the broader context of construction management,
Intelligent Decision Support Systems (IDSS) are
emerging as essential tools for handling «Big Data» and
navigating complex project environments. Evstratov
proposes a unified IDSS architecture that integrates data
collection, mining, and predictive modeling layers. His
work on monolithic construction demonstrates how
multivariate regression models within an IDSS can
evaluate the economic feasibility of resuming suspended
projects by analyzing factors such as technical condition,
weather impact, and resource availability. This highlights
the capacity of intelligent systems to process multi-
threaded data streams and support strategic decision-
making in scenarios with high uncertainty [14].

However, the adoption of such Al-driven systems
in professional practice is often hindered by the «black
box» nature of complex algorithms. Love et al. argue that
for Al to be truly effective in construction management,
it must be explainable. They introduce a «means-end
framework» for Explainable Artificial Intelligence
(XAI), emphasizing that Decision Support Systems must
provide «Meaningful Human Explanations» (MHEs).
Their review indicates that simply generating an optimal
layout is insufficient; the system must also provide
evidence-based justifications such as feature importance
or counterfactual scenarios to build trust and enable end-
users (project managers) to validate the AI’s
recommendations against their professional judgment
and domain knowledge [15].

Main Research

The traditional approach to managing development
projects in the educational sector is characterized by a
significant discontinuity between the definition of
stakeholder requirements and the spatial materialization
of these requirements. In conventional practice, the
project manager operates with abstract constraints
regarding budget, capacity, and functional zoning, while
the architect translates these into a limited number of
static layout alternatives based on heuristic experience.
This linear process often leads to suboptimal decisions
where the full impact of spatial configuration on the
project’s lifecycle cost and functional utility remains
obscure until the detailed design or even operation phase.
To address this structural inefficiency, this study
proposes a formal method for iterative multi-objective
optimization of the functional-spatial configuration of
educational environments. The proposed method
operates as a cybernetic decision support system that
transforms unstructured or semi-structured project
requirements into a set of mathematically verified
implementation scenarios.

The fundamental logic of the proposed method is
visualized in Figure 1, which illustrates the
transformation of the project lifecycle from the initiation
of requirements to the final managerial decision.
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Figure 1 — Algorithmic Model

of the Proposed Optimization Method

The framework is structurally divided into three
distinct but interconnected cognitive spaces: the Problem
Space, the Solution Space, and the Decision Space. In the
Problem Space, the primary objective is the formalization
of the project brief. Unlike traditional management,
where requirements are often treated as static text-based
directives, this method treats requirements as a dynamic
set of mathematical constraints and input vectors.

The core transformation occurs within the Solution
Space, where the generative engine operates. Instead of
manually drafting a single solution, the system utilizes an
evolutionary algorithm to explore the vast combinatorial
landscape of possible spatial configurations. This
generative phase does not aim to produce a single
«correct» layout but rather to evolve a population of
potential layouts that progressively adapt to the
predefined fitness functions. The algorithmic logic
ensures that every generated candidate is rigorously
tested against the defined constraints, filtering out non-
viable options before they consume managerial attention.

This process effectively shifts the project
management focus from correcting errors in manual
designs to defining the performance criteria that drive the
automated generation of designs.

Finally, the Decision Space represents the interface
between the computational output and the project
manager’s strategic judgment. The output of the
optimization process is not a single master plan, but a
Pareto Optimal Frontier — a set of trade-off solutions
where no single objective can be improved without
compromising another. This approach aligns with the
principles of value engineering, as it forces the project
manager to make explicit trade-offs between conflicting
goals, such as capital expenditure versus operational
efficiency or compactness versus functional flexibility.
By presenting a range of optimized scenarios, the
Decision Support System empowers the manager to
select a configuration that best aligns with the specific
strategic priorities of the educational institution, ensuring
that the final approved master plan is both scientifically
optimized and strategically valid.

The practical implementation of the proposed
method requires a rigorous approach to data structuring,
where the physical attributes of an educational facility are
abstracted into computable units. The initial phase of the
algorithm involves the decomposition of the project
scope into a granular list of functional zones. Each zone
is treated as an object with specific attributes, including
required area, aspect ratio preferences, natural lighting
requirements, and acoustic isolation needs. This object-
oriented approach allows the project manager to
manipulate the project scope at a parametric level. For
instance, a change in the educational model from
traditional classrooms to open-plan learning clusters does
not require a manual redesign of the layout but simply an
adjustment of the parameters within the input vector.
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A critical component of the input architecture is the
formalization of topological relationships between these
functional zones. In educational projects, the efficiency
of the facility is largely determined by the logical
adjacency of related spaces. To quantify this, the method
utilizes a weighted Adjacency Graph, where nodes
represent rooms or zones, and edges represent the
required strength of the connection between them. These
connections are assigned numerical weights ranging from
mandatory proximity, such as the link between a kitchen
and a dining hall, to mandatory separation, such as the
distance between a noisy gymnasium and a quiet library.
This graph serves as the primary genotype for the
generative algorithm, guiding the spatial arrangement
process to minimize the weighted distance between
interacting zones.

Furthermore, the input data structure incorporates a
comprehensive set of financial and physical constraints.
The budget constraint is not treated merely as a final cap
on the cost but as a dynamic variable that influences the
geometric compactness of the generated layouts.
Similarly, the site boundaries are digitized into a polygon
that acts as a hard geometric limit for the generative
engine. Table 1 summarizes the classification of input
parameters utilized by the system, categorizing them into
geometric, topological, and economic variables. This
structured data input ensures that the subsequent
evolutionary process is grounded in the specific realities
of the project context, preventing the generation of
theoretically optimal but practically unfeasible solutions.

The central computational mechanism of the
proposed method is built upon a non-dominated sorting
genetic algorithm, specifically adapted for spatial
topology optimization. The logic of this generative
engine follows a cyclical evolutionary process, designed
to mimic the principles of natural selection to iteratively
improve the quality of spatial layouts. As illustrated in
Figure 2, the workflow initiates with the generation of an
initial population of random layouts. At this nascent
stage, the system places functional zones within the
defined site boundaries in a stochastic manner, ensuring
only that they do not overlap physically. While these
initial candidates are functionally rudimentary and likely
suboptimal, they provide the necessary genetic diversity
required for the subsequent evolutionary exploration of
the solution space.

Once the initial population is established, the
system enters the primary evolutionary optimization
loop. This continuous cycle is the engine that drives the
transition from chaos to order. The process begins with
the evaluation of each candidate layout against the
defined fitness functions, which quantify the
performance of the design across multiple dimensions
such as cost and utility. Crucially, before a layout is
assigned a performance score, it must pass through a
rigorous constraint verification module. As depicted in

Figure 3, this module acts as a gatekeeper, checking each
generated solution against hard constraints derived from
building codes and safety regulations.

Input: Single Layout
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Figure 2 — Conceptual Model
of the Method’s Implementation

If a layout violates critical parameters, for example,
by blocking an emergency evacuation route or failing to
meet minimum daylight requirements it is not
immediately discarded but is instead heavily penalized.
This penalty function significantly reduces the
candidate’s likelihood of being selected for reproduction,
thereby steering the evolutionary drift away from non-
compliant regions of the search space while maintaining
the genetic material that might be useful in future
generations.
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Table 1 — Classification of Input Parameters for the Generative Model
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The mechanism for creating new, potentially better
layouts relies on genetic operations applied to the
selected «parent» designs. Figure 4 provides a detailed
decomposition of this generative logic. The process
begins with the selection phase, where layouts with
superior fitness scores are chosen to fill the mating pool.
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Figure 4 — Data Model of the Method’s Core

Components in UML Format
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The algorithm then applies a crossover operator,
which acts as a recombination mechanism. In the context
of spatial planning, crossover involves swapping clusters
of functional zones between two parent layouts. For
instance, an efficient classroom wing from one layout
might be combined with a compact administrative core
from another, theoretically producing an offspring that
inherits the strengths of both parents. This recombination
allows the system to exploit known good configurations
and propagate them through the population.

However, relying solely on crossover can lead to
premature convergence, where the algorithm gets stuck
in a local optimum — a «good enough» solution that is not
truly the best possible outcome. To prevent this, the
method incorporates a mutation operator, which
introduces random variations into the offspring. As
shown in the logic flow of Figure 4, mutation occurs with
a specific probability and involves stochastic
modifications such as shifting a wall position, rotating a
room, or swapping the functions of two adjacent zones.

Candidate Layout

I

Geo-Constraints

Pass Fail

Physical Norms Fail

Pass Fail

J, \ /

Valid Solution

Discard or Penalize

Figure 5 — Model of the Constraint Handling Algorithm
for Layout Validation

From a project management perspective, mutation
represents the innovative element of the design process,
allowing the system to test unconventional
configurations that a human designer might not
intuitively consider. These genetic operations (selection,
crossover, and mutation) are repeated over hundreds of
generations. With each iteration, the population of
layouts becomes increasingly refined, gradually
converging towards a set of optimized solutions that
balance the conflicting objectives of the project.

The efficacy of an evolutionary algorithm is
fundamentally dependent on its ability to accurately
measure the «fitness» or quality of each candidate
solution. In the context of this method, fitness is not a
monolithic score but a multi-dimensional vector
representing the project’s performance against a set of
conflicting managerial objectives. This multi-objective
approach is critical for educational projects, where
success is defined by a complex interplay of economic
viability, functional effectiveness, and long-term
adaptability. The method employs a set of three distinct
objective functions often referred to as fitness functions
to guide the optimization process. As illustrated in the
fitness evaluation sub-system diagram (Figure 5), each
layout generated by the algorithm is systematically
deconstructed and assessed against these three core
criteria. The resulting vector of scores provides a
nuanced performance profile, allowing for a comparative
analysis that goes beyond simplistic, single-metric
evaluations.

The first objective function, F1, is designed to
quantify the economic performance of each layout.
Moving beyond the traditional project management focus
on initial capital expenditure (CAPEX), this function
adopts a lifecycle cost (LCC) perspective. The algorithm
estimates the CAPEX by calculating the total quantity of
primary construction materials required. This is achieved
by measuring the aggregate length of all internal and
external walls and the total floor area of each candidate
design. Layouts with a higher degree of geometric
compactness and a lower ratio of circulation space (e.g.,
corridors) to functional space (e.g., classrooms) naturally
require fewer materials, resulting in a more favorable
CAPEX score.

Furthermore, the function incorporates an
estimation of long-term operational expenditure (OPEX),
primarily focusing on energy consumption for heating
and cooling. This is calculated by analyzing the
building’s form factor — the ratio of its external surface
area to its enclosed volume. A layout with a more
compact, regularized form has a lower surface area
through which thermal energy can be lost, leading to
lower projected energy costs over the building’s
operational life. By integrating both CAPEX and OPEX
into a single economic objective, the algorithm provides
a holistic financial assessment that aligns with the
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principles of total cost of ownership. This empowers the
project manager to make decisions that are not only cost-
effective at the construction stage but also financially
sustainable throughout the facility’s lifecycle.

The second objective function, F2, measures the
functional effectiveness of the spatial configuration,
directly addressing the question of how well the building
will serve its primary users — students and staff. This
function translates the pedagogical and operational
requirements of the educational environment into a
quantifiable utility score. A primary component of this
score is derived from a student flow analysis. The
algorithm simulates the typical daily movement patterns
of students between key functional zones, such as the
main entrance, classrooms, library, and cafeteria. By
calculating the total aggregated walking distance for
these common pathways, the system can objectively
assess the logistical efficiency of a layout. Designs that
minimize these distances are rewarded with a higher
utility score, as they reduce transition times and create a
more seamless educational experience.

Mating Pool

'

1. Selection

!

2. Crossover
(Recombination)

I

3. Mutation

!

New Layout Candidate

Figure 6 — Model of the Generative Algorithm: Selection,
Crossover, and Mutation

This data-driven approach ensures that the
generated layouts are not just geometrically plausible but
are also logically coherent and aligned with the
operational needs of the institution, thereby managing the
project’s quality and scope requirements at a
fundamental level. The class diagram in Figure 6
illustrates this structure, where the UtilityObjective class
encapsulates these evaluation methods.

The third objective function, F3, introduces a
strategic, forward-looking dimension to the evaluation
process by assessing the layout’s adaptability and
resilience to future changes. Educational paradigms and
student populations are dynamic, and a building designed
for today’s needs may become obsolete within a decade.
This function quantifies a layout’s «future-proofing»
potential, ensuring that the project delivers a long-term
strategic asset. One of the key metrics for this objective
is zoning modularity. The algorithm analyzes the
structural grid of the layout, rewarding designs that
utilize a regular, modular grid and minimize the number
of internal load-bearing walls. Such configurations offer
greater flexibility for future reconfiguration, allowing,
for example, two smaller classrooms to be easily
combined into a larger collaborative learning space with
minimal structural intervention.
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Figure 7 — Model of the Multi-Objective
Fitness Evaluation Function
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The final output of the generative optimization
process is fundamentally different from that of traditional
design methods. Instead of delivering a single,
prescriptive «best» solution, the algorithm generates a
Pareto Optimal Frontier. This frontier represents a
curated set of non-dominated solutions, where each point
on the frontier corresponds to a unique and fully detailed
spatial layout. A solution is considered non-dominated if
it is impossible to improve its performance in one
objective function (e.g., reducing lifecycle cost) without
incurring a performance penalty in at least one other
objective (e.g., decreasing functional utility). From a
project management perspective, this set of solutions
serves as a strategic map of the decision landscape,
transforming the abstract challenge of balancing
competing project objectives into a tangible and
explorable set of data-driven alternatives.

Each point on this frontier represents a distinct
trade-off. For instance, one solution might offer the
lowest possible construction cost by utilizing a highly
compact building form with minimal circulation space,
but this may come at the expense of lower functional
utility due to longer internal travel distances or less
daylight access. Conversely, another solution might
achieve a near-perfect utility score by prioritizing short
travel paths and optimal room adjacencies, but at the cost
of a 20% increase in the estimated budget due to a more
complex and materially intensive building footprint.

The existence of a Pareto Optimal Frontier, while
computationally elegant, presents a new challenge for the
project manager: how to select the single best
configuration from a set of equally optimal — albeit
different — alternatives. This selection process cannot be
arbitrary; it must be guided by a structured framework
that aligns the quantitative outputs of the Al with the
qualitative strategic goals of the organization. As
illustrated in the decision logic diagram (Figure 7), the
proposed method incorporates a multi-criteria decision
analysis (MCDA) framework to facilitate this final
selection.

This framework acts as a critical bridge between the
data-driven solution space generated by the algorithm
and the value-driven decision space inhabited by project
stakeholders. The MCDA process formalizes what is
often an intuitive or unstructured debate, providing a
systematic methodology for weighing the strategic
importance of various performance indicators. It
acknowledges that the «best» solution is not an absolute,
mathematical truth but is contingent upon the specific
priorities of the educational institution. For example, a
publicly funded community school might prioritize long-
term operational cost savings and durability, while a
private, specialized academy may place a higher
premium on functional layouts that support a unique
pedagogical model, even at a higher initial cost. This
structured evaluation ensures that the final selection is

not merely a preference but a defensible decision aligned
with the core mission and business case of the project.

The evaluation within this framework is structured
around three primary pillars of managerial concern,
which extend beyond the algorithm’s core fitness
functions. The first pillar is Financial Feasibility, which
moves beyond the simple LCC calculation to assess each
scenario’s alignment with the investor’s financial
strategy, including cash flow projections, potential for
phased implementation, and overall return on investment
(ROI). The second pillar, Strategic Alignment, evaluates
how effectively each layout supports the institution’s
pedagogical vision and brand identity. This qualitative
assessment considers factors such as the potential to
foster collaborative learning, the quality of student
experience, and the building’s capacity to attract and
retain faculty and students. The third pillar, Risk Profile,
provides a holistic risk assessment for each scenario,
considering not only technical risks like construction
complexity but also market risks, regulatory hurdles, and
potential community opposition.

Conclusions

This study addressed the inherent subjectivity and
limitations of traditional, experience-based approaches in
the project management of educational facility
development. Conventional methods restrict the
exploration of design alternatives and fail to provide a
clear, evidence-based link between spatial configurations
and long-term performance indicators. To overcome
these challenges, this paper introduced and detailed a
formal method for the Al-driven, multi-objective
optimization of functional-spatial layouts. The proposed
framework, built upon a Genetic Algorithm, successfully
transforms abstract project requirements into a tangible
set of mathematically validated, Pareto-optimal
scenarios, thereby objectifying the critical pre-
investment phase of project management.

The principal finding of this research is that the
generative optimization approach provides a paradigm
shift from a reactive to a proactive and predictive
management model. By simultaneously evaluating
candidate layouts against conflicting criteria of lifecycle
cost, functional utility, and adaptability, the method
externalizes the complex trade-offs inherent in any
development project. The generation of a Pareto Optimal
Frontier empowers the project manager to move beyond
the role of a passive decision-approver to that of a
strategic decision-maker. This enables a data-driven
dialogue with stakeholders, where choices between
different high-performance scenarios can be justified
based on their alignment with the organization’s
financial, pedagogical, and long-term strategic goals.
Consequently, the method serves as a powerful tool for
value engineering and risk mitigation, enhancing the
project’s digital resilience against future uncertainties.
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The scientific contribution of this work lies in
bridging the gap between computational design and
project management theory. By formalizing the
architectural design problem as a multi-objective
optimization task within a managerial decision-making
context, the proposed method provides an actionable
framework for implementing principles of systems
thinking and digital twin concepts at the earliest stages of
the project lifecycle. This structured approach ensures
traceability and defensibility in decision-making,
transforming the «art» of layout planning into a more
rigorous «science» of spatial configuration management.
However, the proposed method has several limitations
that must be acknowledged. Firstly, the efficacy of the
algorithm is fundamentally contingent upon the quality
and accuracy of the input data, including the
formalization of the adjacency matrix and constraint
parameters. Inaccurate or incomplete inputs will
inevitably lead to suboptimal outputs (GIGO principle).

Secondly, the current model does not incorporate
qualitative or aesthetic criteria, which remain a critical
component of architectural design. The role of the human
architect is therefore not eliminated but transformed into
that of a «curator» and «parameter tuner» who guides the
Al towards aesthetically and culturally appropriate
solutions. Lastly, the framework presented is conceptual
and has been validated through simulation; its
performance in a live, large-scale project environment is
yet to be empirically tested.

Future research should focus on addressing these
limitations through three primary avenues. First,
empirical validation of the method through a real-world
case study is essential to quantify its practical benefits
against traditional design processes. Second, the model
should be extended to incorporate more complex
constraints, such as structural engineering requirements,
detailed energy simulations, and human behavior models.
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Kuiscoruil HayionanwHuil yrHieepcumem 6yoigHuymea i apximexmypu, Kuig

METO/]I AI-ONTHMI3AIII ®YHKIIIOHAJIHGHOT O 30HYBAHHA
B JEBEJIOIIEPCBKHX ITPOEKTAX OCBITHIX CEPEJJOBUII

Anomauia. Tpaouyiiine ynpagninna O0egenonepcbKuMu NPOEKMamy OCEIMHIX cepedosuly 3HA4HOI0 MipOIio CHUPAEMbCA HA
¢y ‘exmuenutl, 6a308aHull Ha O0CEIOI NIOXI0 00 NPOCMOPOBO2O NAAHYBAHHS, WO NPU3BOOUMb 00 0OMENCEHO20 OOCTIONCEHHS
anbMepHamuHUX piuieHs ma ciadko2o 36 sA3Ky Midic HOYAMKOBUMU PIUEHHAMU A 00820CMPOKOBUMU NOKAZHUKAMU JHCUMINEBO20
yukry. Taxuil AiHIIHUL npoYec He MA€E MemOOUUHO20 ITHCMPYMEHmapir /i Hagieayii CKIAOHUMU KOMAPOMICAMU MIXNC 6apMICHIIO,
@yHKyionanbricmo ma MaiOymubol0 adanmueHiCmIo 8 yM08ax GUCOKOI HegusHaweHocmi. [{iia po36 a3aHHA Yux oOMedceny y
docriddicenti po3podaeno ma 3anponoHosano memoo Al-onmumizayii hyHKyioHanbHo20 301Y8aHHA 8 0€8EI0NEPCLKUX NPOEKMAX
oceimHuix cepedosuwy. Lleii memoo 6azyemvca Ha CMPYKMYPOBaHitl MoOeni, wo iHmespye 2eHeMmudHull ai2opumm 3 MoOeuuo
bazamokpumepianvrozo ananizy (anen. Multi-Criteria Decision Analysis, MCDA) wiisixom ghopmanizayii éumoe cmeiikxonoepie y
HAbIp mamemamuuno 6epuiko6anux i NOPIGHAHHUX CyeHapiie npoekmy. Aopom pospobrenozo memody € gopmanizosanuii
aneopummivHuil npoyec, wo QYHKYIOHye AK ceHepamuena cucmema niompumxu nputinamms piwens. IIpoyec nouunacmocs 3
yuppogizayii npockmuux obmedicens, eKuoYarOYU OyOieenbHi HOpMU, OIOONCEMH L JIMIMU MA 36AdCeHUll 2pagh cymidcHocmi, wjo
npeocmasniae MoOnON02IYHI euMo2u Midc QyHKYiOHanbHUMU 30Hamu. [lomim eenepamugHuil pywiiti iHIYIanizye NONYIAYIIO
6UNAOKOBUX NIAHYE8ANbL MA [MEPAmueHO 600CKOHANIOE IX 3a OONOMO2010 2eHemUYHUX ONnepamopis cenekyii, Kkpocoeepy ma
mymayii. [Ipucmocosanicms KOHCHO20 KAHOUOAMA OYIHIOEMbCSL 3a OONOMO20I0 8eKMOPHOI (YYHKYITL, KA 0OHOYACHO ONMUMI3YE
mpu konghnikmui kpumepii: (1) minimizayiro eapmocmi dgcummegozo yukny (anen. Lifecycle Cost, LCC), wo épaxogye kanimanvHi
ma onepayiini eumpamu, (2) Makcumizayiro @yHKYIOHATbHOT KOPUCHOCTI, WO GUMIDIOEMbCA Yepe3 eheKMUBHICIb NOMOKIG
cmyoenmie ma OOMpUMAHHI CYMIHCHOCTI, (3) Makcumizayiio adanmueHoCmi, wo OYiHIoEMbCA 3a MOOYIbHICIIO Ma NOMEHYIanoM
015 maibymuvoeo pozuupenns. Pesynemamom pobomu memoody € ne edune piwenns, a muodcuna Ilapemo, wo npedcmagnic
HAOIp HeOOMIHOBANHUX piuieHb Ol YRPAGIIHCLKO20 aHanizy. 3anpononosanuti memoo AI-onmumizayii pyHKYIOHANILHO20 30HY8AHHSL
3HAMEHYE NAPAOUSMATbHUL 3CY6 8i0 KOHBEHYIUHO20, PeAKMUBHO20 YNPAGIIHHA NPOEKMAMU 00 NPOAKMUBHO20, NPEOUKMUBHO20
nioxooy. Ilepedbauaemucs, wo 6in NiOGUWUMb eheKMUBHICMb NPULIHAMMSL YAPAGIIHCOKUX pilleHb Ha nepedineecmuyiinili gasi
0e6e10nepCcbK020 NPOEKMY Ma HAOACMb MeHeddlcepam HAOIHY, 00KA308Y OCHOBY Olsi 6UOOPY ONMUMATLHOI KOH@I2ypayii.
Ipakmuuna 3navywjicme memoody noaseac 6 momy, wjo cenepayis muodcunu Ilapemo oae 3mo2y cmetikxonoepam npuumamu
00IPYHMOBAHT Ma 3aXuUUjeHi KOMNPOMICHI pileHHst Midic PIHaHCOB8UMU, Neda2ociuHuMU ma cmpamezivHumu yinamu. Lle niosuugye
Yuppogy cmilKicmes npoeKny, MIHIMI3YE PUBUKU PO3NOG3AHHS 3MICMY MA GYHKYIOHANILHO20 CIMAPINHSL, MA 8 KIHYEBOMY NIOCYMK)
2apaHmye, Wo Kanimanvhi ingecmuyii Cmeoprowms Cmitikutl, epekmusHuil ma a0anmueHUtl 0C8IMHIL aKmus.

Kniouogi cnosa: npockmuuii menedyicmenm; cucmema RIOMPUMKU RPULHAMMA DIlLEHb; 2eHEMUYHUN AN20PUMM;
Oazamokpumepianibna OnmuMizayis; 2eHepamueHull OU3AH; NIAHY8AHHA RPOCMOPOBUX Piulenb; 0C8IMHI cepedosua
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