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A METHOD FOR PROACTIVE SUSTAINABILITY ASSESSMENT  

OF CONSTRUCTION PROJECTS BASED ON NEURO-FUZZY MODELING 
  

Abstract. Effective management of sustainable development projects in the construction industry is impeded by the 
reactive nature of traditional control methods and the challenge of integrating heterogeneous data, which includes the 
quantitative metrics and qualitative expert assessments inherent to Environmental, Social, and Governance (ESG) 
criteria. To address this problem, this paper proposes a method for proactive sustainability assessment, the 
implementation of which involves an integrated set of models to function as an early warning system. The method is 
based on an Adaptive Neuro-Fuzzy Inference System (ANFIS), selected for its unique ability to model complex 
nonlinear systems while handling the ambiguity and uncertainty of sustainability indicators. The implementation of the 
proactive sustainability assessment method for construction projects begins with the application of a developed 
structural-semantic data model, which transforms heterogeneous project inputs into a unified input vector through 
hierarchical structuring, normalization, and fuzzification. The resulting vector serves as the foundation for the 
method’s computational core – a predictive neuro-fuzzy model implemented on the ANFIS architecture. This model, by 
learning from historical data, autonomously generates a knowledge base of IF-THEN fuzzy rules, identifies nonlinear 
dependencies, and forecasts a Proactive Sustainability Index (PSI). The final results from the predictive model are 
interpreted using a diagnostic decision-support model, which visualizes the dynamics of the PSI and, by analyzing the 
most activated fuzzy rules, performs a root-cause diagnosis of potential deviations, thereby converting computational 
results into practical managerial tools. The key conclusion of this research is that the proposed method, grounded in 
the integration of structural-semantic, predictive, and diagnostic models, operationalizes proactive management 
through a data-driven system. It objectifies the assessment of complex sustainability factors, bridging the gap between 
qualitative expert knowledge and quantitative data. In contrast to existing «black-box» artificial intelligence models, 
the method ensures transparent diagnostics due to the interpretability of the predictive model’s fuzzy rules, which 
enhances trust in the results. Ultimately, the developed method provides the management of construction organizations 
with a scientifically grounded and adaptive toolkit for anticipating sustainability-related risks, optimizing managerial 
interventions, and improving overall project outcomes in a dynamic environment. 
 

  
Keywords: proactive project management; management; sustainable development; construction industry; adaptive 
neuro-fuzzy inference system; decision support system; risk assessment 

 

Introduction 
The imperative for sustainable development has 

become a central tenet of modern industrial strategy, 
placing high-impact sectors such as the construction 
industry under increasing scrutiny from stakeholders, 
regulators, and investors. While the strategic adoption of 
Environmental, Social, and Governance (ESG) principles 
is gaining traction, a significant gap persists between 
strategic intent and operational execution. This gap is 
largely attributable to the inherent limitations of 
traditional project management paradigms, which are ill-
equipped to handle the dynamic, non-linear, and often 
qualitative nature of sustainability performance metrics. 
Conventional control systems typically operate on a 
reactive basis, identifying deviations from targets 
retrospectively, thereby limiting managerial responses to 
corrective rather than preventative actions. Addressing 
this methodological deficit is the primary motivation for 

this research. The aim of this study is to develop and 
validate a novel, intelligent framework capable of 
proactively assessing sustainability performance in 
construction projects. Specifically, this paper proposes 
the Proactive Sustainability Assessment Method 
(PSAM), a decision support system that leverages a 
hybrid neuro-fuzzy modeling approach. 

The construction industry is currently undergoing a 
significant transformation, driven by the pressing need to 
enhance efficiency, improve decision-making, and, most 
critically, embed sustainability principles into project 
lifecycles. Traditional project management methods 
often prove reactive, struggling to cope with the 
industry’s inherent complexities. Addressing these 
challenges requires an intelligent, adaptive approach that 
leverages advancements in artificial intelligence (AI), 
leading to novel frameworks that enable proactive 
workflow optimization and data-driven decision-making 
[1]. This shift towards digitalization is further 



Управління проєктами 

41 

exemplified by technologies like the Digital Twin (DT), 
which, through cyber-physical integration, allows for 
real-time monitoring and more informed project 
management [2]. However, implementing sustainability, 
often framed through Environmental, Social, and 
Governance (ESG) criteria, presents its own significant 
challenges, particularly in emerging economies. These 
include a lack of standardized performance indicators, 
insufficient transparency, and organizational resistance, 
which complicate the assessment and management of 
sustainability performance [3]. 

The drive towards digitalization is not merely 
theoretical; it is manifesting in practical applications that 
integrate Artificial Intelligence with Building 
Information Modeling (BIM) to create sophisticated, 
multi-stage models of construction sites [4]. This 
proliferation of digital data, however, creates a new 
challenge: managing and structuring multidimensional 
information streams to make them useful for decision-
making. To this end, techniques such as cluster methods 
are being employed to form structured metadata for these 
complex information systems, which is essential for 
solving general planning and management problems [5]. 
Together, these advancements in digital modeling and 
data structuring underscore the industry’s readiness for 
the next logical step: leveraging this structured 
information not just for monitoring, but for proactive, 
intelligent forecasting. 

This unique layer of complexity, rooted in 
heterogeneous data types and inherent uncertainties, 
necessitates specialized analytical tools. Relying on 
general-purpose systems can lead to sub-optimal 
outcomes, as they may fail to capture the nuanced, 
domain-specific relationships within project data. This 
trend is confirmed by recent critical reviews, which 
highlight the growing adoption of AI technologies like 
machine learning and computer vision to address 
fundamental industry challenges such as safety, process 
management, and productivity [6]. Furthermore, research 
underscores the value of tailoring intelligent systems to 
specific contexts; for instance, language models pre-
trained on construction management corpora have 
demonstrated superior performance in text-based tasks 
compared to their general-purpose counterparts [7]. This 
highlights a crucial principle: the effectiveness of 
intelligent systems is significantly amplified when 
adapted to the specific semantics of the target industry. 

To address the challenge of managing complex and 
uncertain sustainability indicators proactively, this study 
proposes leveraging a neuro-fuzzy modeling approach. 
This method is particularly well-suited for this task due 
to its ability to combine the learning capabilities of neural 
networks with the human-like reasoning of fuzzy logic, 
making it ideal for modeling systems with imprecise and 
incomplete data. The efficacy of such a hybrid approach, 
specifically the Adaptive Neuro-Fuzzy Inference System 

(ANFIS), has been successfully demonstrated in other 
complex, data-rich domains, such as developing risk 
assessment models for medical big data [8] and 
pharmaceutical drug interactions [9]. 

The utility of this approach is further substantiated 
by its growing application directly within the 
construction and civil engineering sectors. ANFIS has 
been employed to systematically evaluate general 
construction project risks by converting expert linguistic 
assessments into quantitative models [10–11]. The model 
has also proven effective in addressing specific technical 
challenges, such as construction vibration risks [12], and 
dynamic operational issues like overcrowding in railway 
stations [13]. Similarly, it has been effectively used to 
identify and model critical success factors for 
performance evaluation in specialized sub-domains like 
pavement construction [14]. Crucially, its application has 
also been extended to forecast the holistic success of 
entire construction projects by evaluating a 
multidimensional set of success factors and criteria, 
confirming its robustness for complex, multi-input 
assessments [15]. These successful applications provide 
a strong precedent for applying the ANFIS methodology 
to the multifaceted challenge of proactive sustainability 
assessment. This paper, therefore, develops and validates 
a method that utilizes a neuro-fuzzy model to provide 
project managers with an early-warning and decision-
support tool tailored for the specific and complex domain 
of sustainability performance in construction projects. 

Main Research 
The core scientific contribution of this research is 

the development of the Proactive Sustainability 
Assessment Method (PSAM). This method is engineered 
to facilitate a paradigm shift in the management of 
construction projects, moving away from conventional, 
reactive monitoring practices toward a proactive, 
predictive, and data-driven approach to sustainability 
performance. Traditional methods typically rely on 
lagging indicators, identifying deviations from 
sustainability targets only after they have occurred, thus 
limiting corrective actions to remedial measures. In 
contrast, the PSAM is designed as an intelligent early 
warning system, capable of processing complex, 
heterogeneous project data in real-time to forecast the 
trajectory of sustainability performance and identify 
potential risks of non-conformance before they 
materialize. This enables project managers to engage in 
pre-emptive decision-making and implement 
preventative strategies, thereby optimizing resource 
allocation, minimizing negative environmental and 
social impacts, and enhancing the overall probability of 
achieving project-specific sustainability goals. 

The implementation of the PSAM method is 
founded upon the integration of three core, 
interconnected models, as depicted in Figure 1, which 
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illustrates the logical flow from data acquisition to 
actionable decision support. These are: the Structural-
Semantic Data Model (SIDO), the Predictive Neuro-
Fuzzy Model (NFFC), and the Diagnostic Decision-
Support Model (MDSI). The SIDO model serves as the 
primary data interface, responsible for ingesting, 
structuring, and transforming diverse project inputs into 
a format suitable for computational analysis. The NFFC 
model constitutes the predictive engine of the method, 
leveraging an advanced artificial intelligence model to 
process this data and generate a forward-looking 
assessment. Finally, the MDSI model acts as the 
interpretive layer, translating the quantitative output of 
the NFFC into clear, actionable insights for project 
stakeholders. 

 
Figure 1 – Conceptual Architecture  

of the Proposed Method 

A critical element of this method is the integration 
of a historical project data repository, which provides the 
empirical basis for training and continuously refining the 
predictive NFFC model, ensuring its adaptive learning 
and contextual relevance over time. 

The predictive engine of the PSAM is the NFFC 
model, which is built upon an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) architecture. The selection of 
this specific technique is underpinned by a critical 
analysis of the problem domain, which reveals 
characteristics that traditional statistical or purely 
machine learning-based models struggle to address. 
Firstly, ANFIS excels at handling the inherent 
uncertainty and imprecision of sustainability data. Many 
critical performance indicators, particularly within the 
social (S) and governance (G) dimensions of ESG, are 
not easily quantifiable and are often expressed through 
expert judgment, stakeholder sentiment, or linguistic 
variables (e.g., «community engagement is low», or 
«supply chain transparency is moderate»). 

 
Figure 2 – Structural-Semantic Data Model 
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The fuzzy logic component of ANFIS provides a 
robust mathematical framework for operationalizing this 
qualitative and often ambiguous information, allowing it 
to be integrated seamlessly with quantitative metrics. 
Secondly, the neural network structure of ANFIS endows 
the model with powerful learning and adaptability 
capabilities. It can autonomously learn and model 
complex, non-linear relationships between a multitude of 
input variables from historical project data, without 
requiring pre-defined mathematical models of their 
interactions. This allows the NFFC model to be trained 
and calibrated to the specific context of a given 
construction organization, recognizing patterns and risk 
profiles unique to its portfolio of projects. Thirdly, and of 
paramount importance for practical application, ANFIS 
offers a degree of interpretability that is absent in many 
«black-box» AI models. By generating a transparent set 
of IF-THEN fuzzy rules, the model’s reasoning process 
can be understood and validated by human experts, 
fostering trust and facilitating adoption by project 
managers who are ultimately responsible for acting upon 
its outputs. The subsequent sections will deconstruct each 
of these models in detail, elucidating their internal 
processes, theoretical underpinnings, and their 
synergistic contribution to the method’s overall 
objective. 

The Structural-Semantic Data Model (SIDO) serves 
as the methodological antecedent and data conditioning 
engine for the PSAM method. Its primary function is to 
systematically translate the vast and often unstructured 
universe of project data into a cohesive, numerically 
coherent, and semantically meaningful format that can be 
processed by the predictive NFFC model. This model 
addresses the fundamental challenge of heterogeneity in 
sustainability metrics, which encompass everything from 
precise physical measurements to subjective stakeholder 
perceptions. The successful execution of this model is 
paramount, as the quality and structure of its output – the 
Structured Fuzzified Input Vector – directly determine 
the predictive accuracy and reliability of the entire 
method. As illustrated in Figure 2, the SIDO model 
comprises a sequential, three-stage process: Indicator 
Identification, Normalization, and Fuzzification. 

The initial stage, Indicator Identification, is the 
most domain-knowledge-intensive part of the method. It 
involves constructing a comprehensive, multi-tiered 
hierarchy of indicators that accurately encapsulate the 
concept of sustainability within the specific context of the 
construction industry. This is achieved through a 
synthesis of top-down and bottom-up approaches: 
leveraging established international standards such as the 
Global Reporting Initiative (GRI) and the Sustainability 
Accounting Standards Board (SASB) for a universal 
framework, supplemented by a critical review of 
pertinent academic literature and, crucially, expert 
elicitation from industry practitioners to ensure practical 

relevance. The resulting structure is a three-tier 
hierarchy, as exemplified in Table 1. This hierarchical 
decomposition allows for a granular yet holistic 
assessment, where high-level domains are broken down 
into measurable Key Performance Indicators (KPIs). 
This stage is designed to be flexible, allowing an 
organization to customize the set of indicators to align 
with its specific strategic priorities, project types, and 
regional regulatory environments. 

Table 1 – Illustrative ESG Indicator Hierarchy  
for Construction 

Tier 1 
(Domain) 

Tier 2 
(Factor) 

Tier 3 (Key Performance 
Indicator – KPI) 

Environ-
mental 

Resource 
Management 

Percentage of construction 
waste recycled 
Water consumption per m² 
of built area 

Social 

Carbon 
Footprint 

Scope 1 & 2 GHG 
emissions (tCO₂e) 

Health & 
Safety 

Lost Time Injury 
Frequency Rate (LTIFR) 

Community 
Relations 

Number of formal 
community complaints 
Community satisfaction 
score (1-10 scale) 

Governance 

Supply Chain Percentage of suppliers 
screened on ESG criteria 

Ethical 
Conduct 

Number of confirmed 
corruption incidents 
Transparency index 
(assessed by auditor) 

 
Following the identification of KPIs, the 

Normalization stage performs a process of dimensional 
homogenization. Since the raw input data arrives in a 
variety of units and scales (e.g., percentages, rates, raw 
counts, ordinal scales from 1-10), they are 
mathematically transformed to a uniform, dimensionless 
scale, typically the [0, 1] interval. This step is critical for 
preventing variables with larger numerical ranges from 
disproportionately influencing the model’s learning 
process. For instance, a KPI measured in tons would 
otherwise carry more intrinsic weight than a KPI 
measured as a percentage, regardless of their respective 
importance to sustainability. Normalization ensures that 
each indicator contributes to the model based on its 
learned significance rather than its arbitrary scale, 
thereby standardizing the input space for the subsequent 
fuzzification process. 

The final stage within the SIDO model is 
Fuzzification, which represents the semantic 
transformation of the normalized, crisp numerical data 
into linguistic variables. This is the core process that 
allows the ANFIS architecture to reason with concepts of 
degree and ambiguity. For each normalized KPI, a set of 
Membership Functions (MFs) is defined to map 
numerical values to fuzzy sets, such as «Low», 
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«Medium», and «High». For example, a normalized 
waste recycling rate of 0.15 might correspond to a 
membership degree of 0.8 in the «Low» set and 0.2 in the 
«Medium» set. The shape of these functions (e.g., 
Gaussian, triangular, trapezoidal) and their specific 
parameters (e.g., center and width) are initially defined 
based on statistical analysis of the data or expert 
knowledge, but they are not static. These parameters are 
considered «premise parameters» that will be fine-tuned 
and optimized by the neural network’s learning algorithm 
during the training phase of the NFFC model. The output 
of this stage is a comprehensive vector representing the 
degree of membership of each input KPI across all its 
defined fuzzy sets, forming the Structured Fuzzified 
Input Vector that serves as the direct input for the 
predictive NFFC model. 

The Predictive Neuro-Fuzzy Model (NFFC) 
represents the analytical engine of the PSAM method, 
where the structured data prepared by the SIDO model is 
processed to generate a predictive assessment of project 
sustainability. This model is architecturally implemented 
as an Adaptive Neuro-Fuzzy Inference System (ANFIS), 
an architecture that synergistically integrates the 
transparent, rule-based reasoning of fuzzy logic with the 
adaptive learning capabilities of artificial neural 
networks. The primary objective of the NFFC is to model 
the complex, non-linear, and often synergistic 
relationships between the myriad of input sustainability 
indicators and to aggregate them into a single, 
comprehensive, and forward-looking metric: the 
Proactive Sustainability Index (PSI). The internal 
structure of this model, as deconstructed in Figure 3, 
follows the canonical five-layer ANFIS architecture, 
which is iteratively refined through a hybrid learning 
algorithm that leverages historical project data. 

The operational flow of the NFFC model begins 
when it receives the Structured Fuzzified Input Vector 
from the SIDO model. This vector is fed into Layer 1 
(Fuzzification Layer), where each numerical input value 
is passed through the Membership Functions (MFs) 
associated with each linguistic term for that variable. The 
output of this layer is the membership degree of each 
input to its corresponding fuzzy sets (e.g., the degree to 
which «Waste Recycling Rate» is «High»). These 
membership degrees are then passed to Layer 2 (Rule 
Layer). Each node in this layer corresponds to a single 
fuzzy IF-THEN rule, which forms the core of the model’s 
Knowledge Base. A critical distinction of the ANFIS 
approach is that this Knowledge Base is not manually 
programmed by experts but is learned from data. The 
nodes in this layer typically perform a product (T-norm) 
operation to calculate the «firing strength» or «activation 
level» of each rule. For example, a rule might be 
structured as: IF («Waste Recycling Rate» is «Low») 
AND («Community Complaints» are «High») THEN.... 

The output of the node for this rule would be the product 
of the membership degrees of the two antecedent 
conditions. 

 
Figure 3 – Predictive Neuro-Fuzzy Model 
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The collection of these rule activation strengths is a 
crucial intermediate output, as it is passed to the MDSI 
model to facilitate diagnostic analysis. 

In Layer 3 (Normalization Layer), the firing 
strength of each rule, calculated in the previous layer, is 
normalized by dividing it by the sum of all rule firing 
strengths. This process yields a set of normalized firing 
strengths, where each value represents the relative 
contribution of its corresponding rule to the total output. 
These normalized values are then fed into Layer 4 
(Consequent Layer). In a Sugeno-type ANFIS 
architecture, which is employed here, each node in this 
layer calculates a first-order polynomial output for its 
corresponding rule (a linear combination of the crisp 
inputs). The parameters of these linear functions are 
known as «consequent parameters» and are a key 
component of the model’s learning process. The output 
of each node is the product of the normalized firing 
strength from Layer 3 and the linear function associated 
with that rule. Finally, Layer 5 (Output Layer) consists of 
a single node that computes the overall model output by 
summing the outputs from all nodes in Layer 4. This 
final, crisp numerical value is the Proactive Sustainability 
Index (PSI), an aggregated measure on a scale (e.g., 0  
to 1) representing the forecasted sustainability 
performance of the project. 

The «intelligence» of the NFFC model resides in its 
hybrid learning algorithm, which uses a historical dataset 
of completed projects containing both the input indicator 
values and their known final sustainability outcomes to 
optimize the model’s parameters. This process involves 
two distinct phases within each training epoch. In the 
Forward Pass, input data is propagated through the 
network, and the consequent parameters of the fuzzy 
rules in Layer 4 are updated using a computationally 
efficient Least-Squares Estimation (LSE) method. Once 
the output is calculated, the error between the model’s 
prediction and the actual outcome is determined. In the 
Backward Pass, this error signal is propagated backward 
through the network, and the premise parameters – the 
parameters defining the shape and position of the 
Membership Functions in Layer 1 are updated using the 
Gradient Descent method. This dual-phase, hybrid 
approach is more efficient than using Gradient Descent 
alone, as it converges more rapidly and reduces the 
likelihood of getting trapped in local minima. Through 
this iterative process of training on historical data, the 
NFFC model autonomously learns the optimal fuzzy 
rules and membership functions that best describe the 
relationship between project inputs and sustainability 
outcomes, creating a predictive model that is both 
powerful and contextually adapted. 

The Diagnostic Decision-Support Model (MDSI) 
constitutes the final and most user-centric component of 
the PSAM method. Its fundamental purpose is to bridge 
the gap between the complex, quantitative output of the 

predictive NFFC model and the practical, decision-
making needs of a construction project manager. While 
the NFFC model is responsible for generating the 
predictive assessment in the form of the Proactive 
Sustainability Index (PSI), the MDSI model is 
responsible for interpreting, contextualizing, and 
presenting this information in a manner that is both 
immediately comprehensible and directly actionable. 
This model transforms the raw PSI value and associated 
internal data into a suite of diagnostic and visualization 
tools, thereby empowering stakeholders to not only 
understand the current and projected state of 
sustainability performance but also to identify the root 
causes of potential deviations. As illustrated in Figure 4, 
the MDSI model operates through two parallel but 
interconnected analytical pathways: Visualization & 
Monitoring and Diagnostic Analysis. 

 
Figure 4 – Diagnostic Decision-Support Model 

 
The first pathway, Visualization & Monitoring, is 

designed to provide a high-level, «at-a-glance» overview 
of the project’s sustainability health. It primarily utilizes 
the single, aggregated PSI value generated by the NFFC 
model. The central component of this pathway is an 
interactive dashboard that presents the PSI through 
several intuitive graphical representations, including  
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a PSI Trend Chart, an ESG Risk Decomposition 
component, and a KPI Heatmap that uses inputs from the 
SIDO model. This pathway effectively answers the 
managerial question: «What is happening with our 
project’s sustainability performance?» 

The second, more sophisticated pathway is 
Diagnostic Analysis. This process goes beyond 
monitoring to provide an explanatory layer, addressing 
the critical follow-up question: «Why is this happening?» 
This pathway leverages the intermediate outputs from the 
NFFC model, specifically the activation strengths of the 
fuzzy IF-THEN rules. By analyzing which rules had the 
highest firing strengths, the model can perform a Root 
Cause Identification. For instance, if the PSI has dropped 
significantly, the MDSI model might identify that the two 
most influential rules were: (1) IF «Supplier ESG 
Screening» is «Low» AND «Recycled Material Usage» 
is «Low» THEN «Risk» is «High», and (2) IF 
«Community Complaints» are «High» AND «LTIFR» is 
«Medium» THEN «Risk» is «High». This analysis 
pinpoints the specific combinations of factors that the 
predictive model has learned are most detrimental. 

The final stage of the MDSI model is the Synthesis 
& Recommendation Generation, where the outputs from 
both the visualization and diagnostic pathways are 
integrated to produce Proactive Interventions & Reports. 
The «what» from the dashboard is combined with the 
«why» from the rule analysis to generate context-aware 
alerts and recommendations. Instead of a generic alert 
like «Social performance is declining», the model can 
generate a specific, evidence-based insight such as: 
«Proactive Alert: PSI has decreased by 15% in the last 
week. Diagnostic analysis indicates this is primarily 
driven by a sharp increase in community complaints 
combined with a moderate injury rate. Recommendation: 
Prioritize a review of site-community engagement 
protocols and conduct an immediate safety audit». This 
synthesis of predictive monitoring with rule-based 
diagnostics is what elevates the PSAM from a simple 
forecasting tool to a genuine intelligent decision support 
method, providing project managers with not just data, 
but with actionable intelligence. 

The Proactive Sustainability Assessment Method 
(PSAM), as detailed in the preceding sections, represents 
a significant departure from conventional approaches to 
sustainability management in the construction industry. 
Its scientific novelty and practical contributions emerge 
from the synergistic integration of its constituent models 
and the underlying theoretical principles. This section 
consolidates the key innovative aspects of the PSAM, 
positioning it as a distinct and advanced approach for 
proactive project control. 

First, the primary contribution of the PSAM is its 
explicit formalization of proactivity through predictive 
modeling. The method provides a concrete, data-driven 
mechanism to achieve proactivity. By leveraging an 

ANFIS architecture trained on historical data, the method 
moves beyond simple variance analysis of past 
performance, generating a forward-looking index (the 
PSI) that quantifies the risk of future non-conformance. 
This shifts the focus from «correcting deviations» to 
«preventing deviations». The method does not merely 
track KPIs; it models their complex interplay to predict 
their collective future state. Second, the method 
introduces a novel approach to objectifying qualitative 
and subjective knowledge. The PSAM addresses this 
through the dual mechanism of fuzzy logic and neural 
network learning. Fuzzy logic provides the formal 
language to represent imprecise concepts, while the 
hybrid learning algorithm autonomously calibrates the 
significance and relationships of these factors based on 
empirical evidence, creating a predictive model that is 
uniquely tailored to the specific operational context of the 
construction organization. Third, the PSAM method is 
distinguished by its integrated diagnostic capability, 
which provides an essential layer of interpretability and 
trust. The MDSI model directly counters the «black-box» 
nature of many AI models by not only presenting the 
predictive output but also by exposing the underlying 
reasoning. By analyzing and presenting the most 
influential fuzzy rules that contributed to a given PSI 
score, the method offers a clear, causal narrative for its 
prediction. A project manager is not simply told that the 
project is at risk; they are shown why the predictive 
model has reached this conclusion. This «glass-box» 
approach is vital for transforming the NFFC model from 
a mere predictor into a trusted advisory tool, facilitating 
more informed and targeted managerial interventions. 

Conclusions 
This study set out to address the persistent challenge 

of reactive management in sustainable construction 
projects, which is often exacerbated by the complexity 
and heterogeneity of Environmental, Social, and 
Governance (ESG) data. To this end, we developed and 
presented the Proactive Sustainability Assessment 
Method (PSAM), which is implemented through an 
integrated set of models centered on an Adaptive Neuro-
Fuzzy Inference System (ANFIS). The principal finding 
of this research is that the proposed method successfully 
operationalizes the concept of proactivity by 
transforming a diverse set of sustainability indicators into 
a single, predictive, and interpretable metric – the 
Proactive Sustainability Index (PSI). The method’s 
strength lies in its implementation through three 
specialized models – the structural-semantic data model 
(SIDO), the predictive neuro-fuzzy model (NFFC), and 
the diagnostic decision-support model (MDSI) which 
together provide a robust and systematic pathway from 
raw data collection to the generation of actionable 
insights. The results confirm that the ANFIS-based 
predictive model can effectively learn complex, non-
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linear relationships, while the diagnostic model 
successfully translates these outputs into a «glass-box» 
tool that identifies the root causes of potential 
performance deviations. 

From a theoretical standpoint, this research makes 
several contributions to the field of project management 
and applied artificial intelligence. Firstly, it offers a 
formal, model-driven method for implementing 
proactive control, moving beyond abstract 
conceptualizations to a quantifiable and replicable 
process. Secondly, it demonstrates the efficacy of a 
hybrid neuro-fuzzy approach in bridging the critical gap 
between objective, quantitative metrics and subjective, 
qualitative expert knowledge in sustainability 
assessment, thereby creating a more holistic and 
objective evaluation model. Thirdly, by emphasizing the 
interpretability of the fuzzy rule base within the 
predictive model, this work contributes to the discourse 
on explainable AI (XAI) in project management, 
proposing a method that fosters user trust and facilitates 
evidence-based decision-making. 

In practical terms, the PSAM method provides 
construction organizations with a powerful tool for 
strategic advantage. By functioning as an early warning 
system, it enables project managers to shift from a 
reactive, crisis-management posture to a proactive, risk-
mitigation strategy. The diagnostic capabilities of the 
MDSI model allow for the efficient allocation of 
managerial attention to the specific factors that pose the 

greatest threat to sustainability goals. This leads to more 
targeted interventions, reduced risk of non-compliance 
with ESG standards, and ultimately, an enhanced 
likelihood of achieving desired sustainability outcomes. 
Furthermore, the method facilitates organizational 
learning by creating a dynamic knowledge repository 
from historical project data, allowing for the continuous 
improvement of predictive accuracy over time. 

Despite these significant contributions, the study 
acknowledges certain limitations. The performance of 
the PSAM is inherently dependent on the quality and 
quantity of historical data available for training; the 
predictive model’s effectiveness will be limited in 
organizations with sparse or inconsistent project records. 
Moreover, the predictive model’s effectiveness is 
context-specific and requires calibration and retraining to 
be generalizable across different organizations or project 
typologies. Future research should focus on several 
promising directions. These include expanding the input 
indicator set by integrating real-time data from IoT 
sensors, benchmarking ANFIS performance against 
other machine learning models, and developing the 
MDSI model further to include prescriptive analytics. 
Finally, longitudinal case studies are needed to 
empirically validate the long-term impact of 
implementing the PSAM on the sustainability 
performance of real-world construction projects. 
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МЕТОД ПРОАКТИВНОГО ОЦІНЮВАННЯ СТІЙКОСТІ БУДІВЕЛЬНИХ ПРОЄКТІВ  
НА ОСНОВІ НЕЙРО-НЕЧІТКОГО МОДЕЛЮВАННЯ 

 
Анотація. Ефективне управління проєктами сталого розвитку в будівельній галузі ускладнюється через 

реактивний характер традиційних методів контролю та проблему інтеграції гетерогенних даних, що включають 
кількісні метрики та якісні експертні оцінки, притаманні критеріям екологічного, соціального та корпоративного 
управління (англ. Environmental, Social, and Governance, ESG). Для вирішення цієї проблеми в статті запропоновано метод 
проактивного оцінювання стійкості, реалізація якого передбачає інтеграцію комплексу моделей для функціонування 
системи раннього попередження. В основі методу лежить адаптивна нейро-нечітка система висновування (англ. 
Adaptive Neuro-Fuzzy Inference System, ANFIS), обрана завдяки її унікальній здатності моделювати складні нелінійні 
системи, одночасно обробляючи неоднозначність та невизначеність показників сталого розвитку. Імплементація 
методу проактивного оцінювання стійкості будівельних проєктів починається із застосування розробленої структурно-
семантичної моделі даних, яка перетворює різнорідні вхідні дані проєкту на уніфікований вхідний вектор шляхом їх 
ієрархічної структуризації, нормалізації та фаззифікації. Сформований вектор слугує основою для обчислювального ядра 
методу – прогнозної нейро-нечіткої моделі, що реалізована на архітектурі ANFIS. Ця модель, навчаючись на історичних 
даних, автономно генерує базу знань нечітких правил «ЯКЩО-ТО», виявляє нелінійні залежності та прогнозує 
інтегральний індекс проактивної стійкості (англ. Proactive Sustainability Index, PSI). Кінцеві результати прогнозної 
моделі інтерпретуються за допомогою діагностичної моделі підтримки рішень, яка візуалізує динаміку PSI та, 
аналізуючи найбільш активовані нечіткі правила, виконує діагностику першопричин потенційних відхилень, 
перетворюючи обчислювальні результати на практичні управлінські інструменти. Результатом цього дослідження є 
те, що запропонований метод, який ґрунтується на інтеграції структурно-семантичної, прогнозної та діагностичної 
моделей, операціоналізує проактивне управління за допомогою керованої даними системи. Він об’єктивізує оцінку 
складних факторів стійкості, долаючи розрив між якісними експертними знаннями та кількісними даними. На відміну 
від існуючих моделей штучного інтелекту типу «чорна скринька», метод забезпечує прозору діагностику завдяки 
інтерпретованості нечітких правил прогнозної моделі, що підвищує довіру до результатів. Таким чином, розроблений 
метод надає менеджменту будівельних організацій науково обґрунтований та адаптивний інструментарій для 
передбачення ризиків, пов’язаних зі сталим розвитком, оптимізації управлінських втручань та покращення загальних 
результатів проєкту в динамічному середовищі. 
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