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Abstract. Effective management of sustainable development projects in the construction industry is impeded by the
reactive nature of traditional control methods and the challenge of integrating heterogeneous data, which includes the
quantitative metrics and qualitative expert assessments inherent to Environmental, Social, and Governance (ESG)
criteria. To address this problem, this paper proposes a method for proactive sustainability assessment, the
implementation of which involves an integrated set of models to function as an early warning system. The method is
based on an Adaptive Neuro-Fuzzy Inference System (ANFIS), selected for its unique ability to model complex
nonlinear systems while handling the ambiguity and uncertainty of sustainability indicators. The implementation of the
proactive sustainability assessment method for construction projects begins with the application of a developed
structural-semantic data model, which transforms heterogeneous project inputs into a unified input vector through
hierarchical structuring, normalization, and fuzzification. The resulting vector serves as the foundation for the
method’s computational core — a predictive neuro-fuzzy model implemented on the ANFIS architecture. This model, by
learning from historical data, autonomously generates a knowledge base of IF-THEN fuzzy rules, identifies nonlinear
dependencies, and forecasts a Proactive Sustainability Index (PSI). The final results from the predictive model are
interpreted using a diagnostic decision-support model, which visualizes the dynamics of the PSI and, by analyzing the
most activated fuzzy rules, performs a root-cause diagnosis of potential deviations, thereby converting computational
results into practical managerial tools. The key conclusion of this research is that the proposed method, grounded in
the integration of structural-semantic, predictive, and diagnostic models, operationalizes proactive management
through a data-driven system. It objectifies the assessment of complex sustainability factors, bridging the gap between
qualitative expert knowledge and quantitative data. In contrast to existing «black-box» artificial intelligence models,
the method ensures transparent diagnostics due to the interpretability of the predictive model’s fuzzy rules, which
enhances trust in the results. Ultimately, the developed method provides the management of construction organizations
with a scientifically grounded and adaptive toolkit for anticipating sustainability-related risks, optimizing managerial
interventions, and improving overall project outcomes in a dynamic environment.
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Introduction

The imperative for sustainable development has
become a central tenet of modern industrial strategy,
placing high-impact sectors such as the construction
industry under increasing scrutiny from stakeholders,
regulators, and investors. While the strategic adoption of
Environmental, Social, and Governance (ESG) principles
is gaining traction, a significant gap persists between
strategic intent and operational execution. This gap is
largely attributable to the inherent limitations of
traditional project management paradigms, which are ill-
equipped to handle the dynamic, non-linear, and often
qualitative nature of sustainability performance metrics.
Conventional control systems typically operate on a
reactive basis, identifying deviations from targets
retrospectively, thereby limiting managerial responses to
corrective rather than preventative actions. Addressing
this methodological deficit is the primary motivation for

this research. The aim of this study is to develop and
validate a novel, intelligent framework capable of
proactively assessing sustainability performance in
construction projects. Specifically, this paper proposes
the Proactive Sustainability Assessment Method
(PSAM), a decision support system that leverages a
hybrid neuro-fuzzy modeling approach.

The construction industry is currently undergoing a
significant transformation, driven by the pressing need to
enhance efficiency, improve decision-making, and, most
critically, embed sustainability principles into project
lifecycles. Traditional project management methods
often prove reactive, struggling to cope with the
industry’s inherent complexities. Addressing these
challenges requires an intelligent, adaptive approach that
leverages advancements in artificial intelligence (Al),
leading to novel frameworks that enable proactive
workflow optimization and data-driven decision-making
[1]. This shift towards digitalization is further
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exemplified by technologies like the Digital Twin (DT),
which, through cyber-physical integration, allows for
real-time monitoring and more informed project
management [2]. However, implementing sustainability,
often framed through Environmental, Social, and
Governance (ESQG) criteria, presents its own significant
challenges, particularly in emerging economies. These
include a lack of standardized performance indicators,
insufficient transparency, and organizational resistance,
which complicate the assessment and management of
sustainability performance [3].

The drive towards digitalization is not merely
theoretical; it is manifesting in practical applications that
integrate  Artificial Intelligence with  Building
Information Modeling (BIM) to create sophisticated,
multi-stage models of construction sites [4]. This
proliferation of digital data, however, creates a new
challenge: managing and structuring multidimensional
information streams to make them useful for decision-
making. To this end, techniques such as cluster methods
are being employed to form structured metadata for these
complex information systems, which is essential for
solving general planning and management problems [5].
Together, these advancements in digital modeling and
data structuring underscore the industry’s readiness for
the next logical step: leveraging this structured
information not just for monitoring, but for proactive,
intelligent forecasting.

This unique layer of complexity, rooted in
heterogeneous data types and inherent uncertainties,
necessitates specialized analytical tools. Relying on
general-purpose systems can lead to sub-optimal
outcomes, as they may fail to capture the nuanced,
domain-specific relationships within project data. This
trend is confirmed by recent critical reviews, which
highlight the growing adoption of Al technologies like
machine learning and computer vision to address
fundamental industry challenges such as safety, process
management, and productivity [6]. Furthermore, research
underscores the value of tailoring intelligent systems to
specific contexts; for instance, language models pre-
trained on construction management corpora have
demonstrated superior performance in text-based tasks
compared to their general-purpose counterparts [7]. This
highlights a crucial principle: the effectiveness of
intelligent systems is significantly amplified when
adapted to the specific semantics of the target industry.

To address the challenge of managing complex and
uncertain sustainability indicators proactively, this study
proposes leveraging a neuro-fuzzy modeling approach.
This method is particularly well-suited for this task due
to its ability to combine the learning capabilities of neural
networks with the human-like reasoning of fuzzy logic,
making it ideal for modeling systems with imprecise and
incomplete data. The efficacy of such a hybrid approach,
specifically the Adaptive Neuro-Fuzzy Inference System

(ANFIS), has been successfully demonstrated in other
complex, data-rich domains, such as developing risk
assessment models for medical big data [8] and
pharmaceutical drug interactions [9].

The utility of this approach is further substantiated
by its growing application directly within the
construction and civil engineering sectors. ANFIS has
been employed to systematically evaluate general
construction project risks by converting expert linguistic
assessments into quantitative models [10—11]. The model
has also proven effective in addressing specific technical
challenges, such as construction vibration risks [12], and
dynamic operational issues like overcrowding in railway
stations [13]. Similarly, it has been effectively used to
identify and model critical success factors for
performance evaluation in specialized sub-domains like
pavement construction [14]. Crucially, its application has
also been extended to forecast the holistic success of
entire  construction projects by evaluating a
multidimensional set of success factors and criteria,
confirming its robustness for complex, multi-input
assessments [15]. These successful applications provide
a strong precedent for applying the ANFIS methodology
to the multifaceted challenge of proactive sustainability
assessment. This paper, therefore, develops and validates
a method that utilizes a neuro-fuzzy model to provide
project managers with an early-warning and decision-
support tool tailored for the specific and complex domain
of sustainability performance in construction projects.

Main Research

The core scientific contribution of this research is
the development of the Proactive Sustainability
Assessment Method (PSAM). This method is engineered
to facilitate a paradigm shift in the management of
construction projects, moving away from conventional,
reactive monitoring practices toward a proactive,
predictive, and data-driven approach to sustainability
performance. Traditional methods typically rely on
lagging indicators, identifying deviations from
sustainability targets only after they have occurred, thus
limiting corrective actions to remedial measures. In
contrast, the PSAM is designed as an intelligent early
warning system, capable of processing complex,
heterogeneous project data in real-time to forecast the
trajectory of sustainability performance and identify
potential risks of non-conformance before they
materialize. This enables project managers to engage in
pre-emptive decision-making and implement
preventative strategies, thereby optimizing resource
allocation, minimizing negative environmental and
social impacts, and enhancing the overall probability of
achieving project-specific sustainability goals.

The implementation of the PSAM method is
founded upon the integration of three core,
interconnected models, as depicted in Figure 1, which
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illustrates the logical flow from data acquisition to
actionable decision support. These are: the Structural-
Semantic Data Model (SIDO), the Predictive Neuro-
Fuzzy Model (NFFC), and the Diagnostic Decision-
Support Model (MDSI). The SIDO model serves as the
primary data interface, responsible for ingesting,
structuring, and transforming diverse project inputs into
a format suitable for computational analysis. The NFFC
model constitutes the predictive engine of the method,
leveraging an advanced artificial intelligence model to
process this data and generate a forward-looking
assessment. Finally, the MDSI model acts as the
interpretive layer, translating the quantitative output of
the NFFC into clear, actionable insights for project
stakeholders.

Project Data

I

Module 1: SIDO
Decomposition &
DOperationalization

Historical Data

from Completed Projects

Fuzzified Input Vectors

Module 2: NFFC
Neuro-Fuzzy
Forecasting Core

Proactive Sustainability
Index (PSI)

Module 3: MDSI
Managerial Decision
Support Interface

Actionahle Insights
for the Project Manager

Figure 1 — Conceptual Architecture
of the Proposed Method

A critical element of this method is the integration
of a historical project data repository, which provides the
empirical basis for training and continuously refining the
predictive NFFC model, ensuring its adaptive learning
and contextual relevance over time.

The predictive engine of the PSAM is the NFFC
model, which is built upon an Adaptive Neuro-Fuzzy
Inference System (ANFIS) architecture. The selection of
this specific technique is underpinned by a critical
analysis of the problem domain, which reveals
characteristics that traditional statistical or purely
machine learning-based models struggle to address.
Firstly, ANFIS excels at handling the inherent
uncertainty and imprecision of sustainability data. Many
critical performance indicators, particularly within the
social (S) and governance (G) dimensions of ESG, are
not easily quantifiable and are often expressed through
expert judgment, stakeholder sentiment, or linguistic
variables (e.g., «community engagement is low», or
«supply chain transparency is moderate).

SIDO Module

Quantitative Data Qualitative Data

[ 1.1 Indicator Identification ]

v

1.2 Nermalization

v

1.3 Fuzzification
Applying Membership
Functions

|

Linguistic Terms
(e.g., 'Low! 'Medium) 'High')

Structured Fuzzified
Input Vector

Figure 2 — Structural-Semantic Data Model
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The fuzzy logic component of ANFIS provides a
robust mathematical framework for operationalizing this
qualitative and often ambiguous information, allowing it
to be integrated seamlessly with quantitative metrics.
Secondly, the neural network structure of ANFIS endows
the model with powerful learning and adaptability
capabilities. It can autonomously learn and model
complex, non-linear relationships between a multitude of
input variables from historical project data, without
requiring pre-defined mathematical models of their
interactions. This allows the NFFC model to be trained
and calibrated to the specific context of a given
construction organization, recognizing patterns and risk
profiles unique to its portfolio of projects. Thirdly, and of
paramount importance for practical application, ANFIS
offers a degree of interpretability that is absent in many
«black-box» Al models. By generating a transparent set
of IF-THEN fuzzy rules, the model’s reasoning process
can be understood and validated by human experts,
fostering trust and facilitating adoption by project
managers who are ultimately responsible for acting upon
its outputs. The subsequent sections will deconstruct each
of these models in detail, elucidating their internal

processes, theoretical underpinnings, and their
synergistic contribution to the method’s overall
objective.

The Structural-Semantic Data Model (SIDO) serves
as the methodological antecedent and data conditioning
engine for the PSAM method. Its primary function is to
systematically translate the vast and often unstructured
universe of project data into a cohesive, numerically
coherent, and semantically meaningful format that can be
processed by the predictive NFFC model. This model
addresses the fundamental challenge of heterogeneity in
sustainability metrics, which encompass everything from
precise physical measurements to subjective stakeholder
perceptions. The successful execution of this model is
paramount, as the quality and structure of its output — the
Structured Fuzzified Input Vector — directly determine
the predictive accuracy and reliability of the entire
method. As illustrated in Figure 2, the SIDO model
comprises a sequential, three-stage process: Indicator
Identification, Normalization, and Fuzzification.

The initial stage, Indicator Identification, is the
most domain-knowledge-intensive part of the method. It
involves constructing a comprehensive, multi-tiered
hierarchy of indicators that accurately encapsulate the
concept of sustainability within the specific context of the
construction industry. This is achieved through a
synthesis of top-down and bottom-up approaches:
leveraging established international standards such as the
Global Reporting Initiative (GRI) and the Sustainability
Accounting Standards Board (SASB) for a universal
framework, supplemented by a critical review of
pertinent academic literature and, crucially, expert
elicitation from industry practitioners to ensure practical

relevance. The resulting structure is a three-tier
hierarchy, as exemplified in Table 1. This hierarchical
decomposition allows for a granular yet holistic
assessment, where high-level domains are broken down
into measurable Key Performance Indicators (KPIs).
This stage is designed to be flexible, allowing an
organization to customize the set of indicators to align
with its specific strategic priorities, project types, and
regional regulatory environments.

Table 1 — Hlustrative ESG Indicator Hierarchy
for Construction

Tier 1 Tier 2 Tier 3 (Key Performance
(Domain) (Factor) Indicator — KPI)
Percentage of construction
Environ- Resource waste recycled
mental Management | Water consumption per m?
of built area
Carbon Scope 1 & 2 GHG
Footprint emissions (tCO2¢)
Health & Lost Time Injury
Social Safety Frequency Rate (LTIFR)
Number of formal
Community community complaints
Relations Community satisfaction
score (1-10 scale)
. Percentage of suppliers
Supply Chain screened on ESG criteria
Number of confirmed
Governance . Lo
Ethical corruption incidents
Conduct Transparency index
(assessed by auditor)

Following the identification of KPIs, the
Normalization stage performs a process of dimensional
homogenization. Since the raw input data arrives in a
variety of units and scales (e.g., percentages, rates, raw
counts, ordinal scales from 1-10), they are
mathematically transformed to a uniform, dimensionless
scale, typically the [0, 1] interval. This step is critical for
preventing variables with larger numerical ranges from
disproportionately influencing the model’s learning
process. For instance, a KPI measured in tons would
otherwise carry more intrinsic weight than a KPI
measured as a percentage, regardless of their respective
importance to sustainability. Normalization ensures that
each indicator contributes to the model based on its
learned significance rather than its arbitrary scale,
thereby standardizing the input space for the subsequent
fuzzification process.

The final stage within the SIDO model is
Fuzzification, ~which represents the semantic
transformation of the normalized, crisp numerical data
into linguistic variables. This is the core process that
allows the ANFIS architecture to reason with concepts of
degree and ambiguity. For each normalized KPI, a set of
Membership Functions (MFs) is defined to map
numerical values to fuzzy sets, such as «Lowy,
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«Medium», and «High». For example, a normalized
waste recycling rate of 0.15 might correspond to a
membership degree of 0.8 in the «Low» set and 0.2 in the
«Medium» set. The shape of these functions (e.g.,
Gaussian, triangular, trapezoidal) and their specific
parameters (e.g., center and width) are initially defined
based on statistical analysis of the data or expert
knowledge, but they are not static. These parameters are
considered «premise parameters» that will be fine-tuned
and optimized by the neural network’s learning algorithm
during the training phase of the NFFC model. The output
of this stage is a comprehensive vector representing the
degree of membership of each input KPI across all its
defined fuzzy sets, forming the Structured Fuzzified
Input Vector that serves as the direct input for the
predictive NFFC model.

The Predictive Neuro-Fuzzy Model (NFFC)
represents the analytical engine of the PSAM method,
where the structured data prepared by the SIDO model is
processed to generate a predictive assessment of project
sustainability. This model is architecturally implemented
as an Adaptive Neuro-Fuzzy Inference System (ANFIS),
an architecture that synergistically integrates the
transparent, rule-based reasoning of fuzzy logic with the
adaptive learning capabilities of artificial neural
networks. The primary objective of the NFFC is to model
the complex, non-linear, and often synergistic
relationships between the myriad of input sustainability
indicators and to aggregate them into a single,
comprehensive, and forward-looking metric: the
Proactive Sustainability Index (PSI). The internal
structure of this model, as deconstructed in Figure 3,
follows the canonical five-layer ANFIS architecture,
which is iteratively refined through a hybrid learning
algorithm that leverages historical project data.

The operational flow of the NFFC model begins
when it receives the Structured Fuzzified Input Vector
from the SIDO model. This vector is fed into Layer 1
(Fuzzification Layer), where each numerical input value
is passed through the Membership Functions (MFs)
associated with each linguistic term for that variable. The
output of this layer is the membership degree of each
input to its corresponding fuzzy sets (e.g., the degree to
which «Waste Recycling Rate» is «High»). These
membership degrees are then passed to Layer 2 (Rule
Layer). Each node in this layer corresponds to a single
fuzzy IF-THEN rule, which forms the core of the model’s
Knowledge Base. A critical distinction of the ANFIS
approach is that this Knowledge Base is not manually
programmed by experts but is learned from data. The
nodes in this layer typically perform a product (T-norm)
operation to calculate the «firing strength» or «activation
level» of each rule. For example, a rule might be
structured as: IF («Waste Recycling Rate» is «Low»)
AND («Community Complaints» are «High») THEN....

The output of the node for this rule would be the product
of the membership degrees of the two antecedent
conditions.

NFFC Module

Hybrid Learning Mechanism

Backward Pass

Historical Dataset

Forward Pass

. Knowledge Base
Fuzzified Input Vector

Ference Pipelme

Memhershm Degrees

| Rule Layer l

Firing Strengths

[ Normalization Layer J

Nurmahzed Strengths

Consequent Layer

Weighted Rule Outputs

Aggregation Layer

Figure 3 — Predictive Neuro-Fuzzy Model

Rule Activation Strengths
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The collection of these rule activation strengths is a
crucial intermediate output, as it is passed to the MDSI
model to facilitate diagnostic analysis.

In Layer 3 (Normalization Layer), the firing
strength of each rule, calculated in the previous layer, is
normalized by dividing it by the sum of all rule firing
strengths. This process yields a set of normalized firing
strengths, where each value represents the relative
contribution of its corresponding rule to the total output.
These normalized values are then fed into Layer 4
(Consequent Layer). In a Sugeno-type ANFIS
architecture, which is employed here, each node in this
layer calculates a first-order polynomial output for its
corresponding rule (a linear combination of the crisp
inputs). The parameters of these linear functions are
known as «consequent parameters» and are a key
component of the model’s learning process. The output
of each node is the product of the normalized firing
strength from Layer 3 and the linear function associated
with that rule. Finally, Layer 5 (Output Layer) consists of
a single node that computes the overall model output by
summing the outputs from all nodes in Layer 4. This
final, crisp numerical value is the Proactive Sustainability
Index (PSI), an aggregated measure on a scale (e.g., 0
to 1) representing the forecasted sustainability
performance of the project.

The «intelligence» of the NFFC model resides in its
hybrid learning algorithm, which uses a historical dataset
of completed projects containing both the input indicator
values and their known final sustainability outcomes to
optimize the model’s parameters. This process involves
two distinct phases within each training epoch. In the
Forward Pass, input data is propagated through the
network, and the consequent parameters of the fuzzy
rules in Layer 4 are updated using a computationally
efficient Least-Squares Estimation (LSE) method. Once
the output is calculated, the error between the model’s
prediction and the actual outcome is determined. In the
Backward Pass, this error signal is propagated backward
through the network, and the premise parameters — the
parameters defining the shape and position of the
Membership Functions in Layer 1 are updated using the
Gradient Descent method. This dual-phase, hybrid
approach is more efficient than using Gradient Descent
alone, as it converges more rapidly and reduces the
likelihood of getting trapped in local minima. Through
this iterative process of training on historical data, the
NFFC model autonomously learns the optimal fuzzy
rules and membership functions that best describe the
relationship between project inputs and sustainability
outcomes, creating a predictive model that is both
powerful and contextually adapted.

The Diagnostic Decision-Support Model (MDSI)
constitutes the final and most user-centric component of
the PSAM method. Its fundamental purpose is to bridge
the gap between the complex, quantitative output of the

predictive NFFC model and the practical, decision-
making needs of a construction project manager. While
the NFFC model is responsible for generating the
predictive assessment in the form of the Proactive
Sustainability Index (PSI), the MDSI model is
responsible for interpreting, contextualizing, and
presenting this information in a manner that is both
immediately comprehensible and directly actionable.
This model transforms the raw PSI value and associated
internal data into a suite of diagnostic and visualization
tools, thereby empowering stakeholders to not only
understand the current and projected state of
sustainability performance but also to identify the root
causes of potential deviations. As illustrated in Figure 4,
the MDSI model operates through two parallel but
interconnected analytical pathways: Visualization &
Monitoring and Diagnostic Analysis.

MDSI Module

PSI Value Activated Fuzzy Rules

3.1 Visualization &
Monitoring

KPI Heatmap

[ 3.2 Diagnostic Analysis ]

PSI Trend Chart

I\

ESG Risk Decomposition

'

Identification of Key

/

Synthesis Engine

v

Proactive Interventions
& Reports

Figure 4 — Diagnostic Decision-Support Model

The first pathway, Visualization & Monitoring, is
designed to provide a high-level, «at-a-glance» overview
of the project’s sustainability health. It primarily utilizes
the single, aggregated PSI value generated by the NFFC
model. The central component of this pathway is an
interactive dashboard that presents the PSI through
several intuitive graphical representations, including
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a PSI Trend Chart, an ESG Risk Decomposition
component, and a KPI Heatmap that uses inputs from the
SIDO model. This pathway effectively answers the
managerial question: «What is happening with our
project’s sustainability performance?»

The second, more sophisticated pathway is
Diagnostic Analysis. This process goes beyond
monitoring to provide an explanatory layer, addressing
the critical follow-up question: « Why is this happening?»
This pathway leverages the intermediate outputs from the
NFFC model, specifically the activation strengths of the
fuzzy IF-THEN rules. By analyzing which rules had the
highest firing strengths, the model can perform a Root
Cause Identification. For instance, if the PSI has dropped
significantly, the MDSI model might identify that the two
most influential rules were: (1) IF «Supplier ESG
Screening» is «Low» AND «Recycled Material Usage»
is «Low» THEN «Risk» is «High», and (2) IF
«Community Complaints» are «High» AND «LTIFR» is
«Medium» THEN «Risk» is «High». This analysis
pinpoints the specific combinations of factors that the
predictive model has learned are most detrimental.

The final stage of the MDSI model is the Synthesis
& Recommendation Generation, where the outputs from
both the visualization and diagnostic pathways are
integrated to produce Proactive Interventions & Reports.
The «what» from the dashboard is combined with the
«why» from the rule analysis to generate context-aware
alerts and recommendations. Instead of a generic alert
like «Social performance is declining», the model can
generate a specific, evidence-based insight such as:
«Proactive Alert: PSI has decreased by 15% in the last
week. Diagnostic analysis indicates this is primarily
driven by a sharp increase in community complaints
combined with a moderate injury rate. Recommendation:
Prioritize a review of site-community engagement
protocols and conduct an immediate safety audit». This
synthesis of predictive monitoring with rule-based
diagnostics is what elevates the PSAM from a simple
forecasting tool to a genuine intelligent decision support
method, providing project managers with not just data,
but with actionable intelligence.

The Proactive Sustainability Assessment Method
(PSAM), as detailed in the preceding sections, represents
a significant departure from conventional approaches to
sustainability management in the construction industry.
Its scientific novelty and practical contributions emerge
from the synergistic integration of its constituent models
and the underlying theoretical principles. This section
consolidates the key innovative aspects of the PSAM,
positioning it as a distinct and advanced approach for
proactive project control.

First, the primary contribution of the PSAM is its
explicit formalization of proactivity through predictive
modeling. The method provides a concrete, data-driven
mechanism to achieve proactivity. By leveraging an

ANFIS architecture trained on historical data, the method
moves beyond simple variance analysis of past
performance, generating a forward-looking index (the
PSI) that quantifies the risk of future non-conformance.
This shifts the focus from «correcting deviations» to
«preventing deviations». The method does not merely
track KPIs; it models their complex interplay to predict
their collective future state. Second, the method
introduces a novel approach to objectifying qualitative
and subjective knowledge. The PSAM addresses this
through the dual mechanism of fuzzy logic and neural
network learning. Fuzzy logic provides the formal
language to represent imprecise concepts, while the
hybrid learning algorithm autonomously calibrates the
significance and relationships of these factors based on
empirical evidence, creating a predictive model that is
uniquely tailored to the specific operational context of the
construction organization. Third, the PSAM method is
distinguished by its integrated diagnostic capability,
which provides an essential layer of interpretability and
trust. The MDSI model directly counters the «black-box»
nature of many Al models by not only presenting the
predictive output but also by exposing the underlying
reasoning. By analyzing and presenting the most
influential fuzzy rules that contributed to a given PSI
score, the method offers a clear, causal narrative for its
prediction. A project manager is not simply told that the
project is at risk; they are shown why the predictive
model has reached this conclusion. This «glass-box»
approach is vital for transforming the NFFC model from
a mere predictor into a trusted advisory tool, facilitating
more informed and targeted managerial interventions.

Conclusions

This study set out to address the persistent challenge
of reactive management in sustainable construction
projects, which is often exacerbated by the complexity
and heterogeneity of Environmental, Social, and
Governance (ESG) data. To this end, we developed and
presented the Proactive Sustainability Assessment
Method (PSAM), which is implemented through an
integrated set of models centered on an Adaptive Neuro-
Fuzzy Inference System (ANFIS). The principal finding
of this research is that the proposed method successfully
operationalizes the concept of proactivity by
transforming a diverse set of sustainability indicators into
a single, predictive, and interpretable metric — the
Proactive Sustainability Index (PSI). The method’s
strength lies in its implementation through three
specialized models — the structural-semantic data model
(SIDO), the predictive neuro-fuzzy model (NFFC), and
the diagnostic decision-support model (MDSI) which
together provide a robust and systematic pathway from
raw data collection to the generation of actionable
insights. The results confirm that the ANFIS-based
predictive model can effectively learn complex, non-
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linear relationships, while the diagnostic model
successfully translates these outputs into a «glass-box»
tool that identifies the root causes of potential
performance deviations.

From a theoretical standpoint, this research makes
several contributions to the field of project management
and applied artificial intelligence. Firstly, it offers a
formal, model-driven method for implementing
proactive  control, moving beyond  abstract
conceptualizations to a quantifiable and replicable
process. Secondly, it demonstrates the efficacy of a
hybrid neuro-fuzzy approach in bridging the critical gap
between objective, quantitative metrics and subjective,
qualitative  expert knowledge in  sustainability
assessment, thereby creating a more holistic and
objective evaluation model. Thirdly, by emphasizing the
interpretability of the fuzzy rule base within the
predictive model, this work contributes to the discourse
on explainable Al (XAI) in project management,
proposing a method that fosters user trust and facilitates
evidence-based decision-making.

In practical terms, the PSAM method provides
construction organizations with a powerful tool for
strategic advantage. By functioning as an early warning
system, it enables project managers to shift from a
reactive, crisis-management posture to a proactive, risk-
mitigation strategy. The diagnostic capabilities of the
MDSI model allow for the efficient allocation of
managerial attention to the specific factors that pose the

greatest threat to sustainability goals. This leads to more
targeted interventions, reduced risk of non-compliance
with ESG standards, and ultimately, an enhanced
likelihood of achieving desired sustainability outcomes.
Furthermore, the method facilitates organizational
learning by creating a dynamic knowledge repository
from historical project data, allowing for the continuous
improvement of predictive accuracy over time.

Despite these significant contributions, the study
acknowledges certain limitations. The performance of
the PSAM is inherently dependent on the quality and
quantity of historical data available for training; the
predictive model’s effectiveness will be limited in
organizations with sparse or inconsistent project records.
Moreover, the predictive model’s effectiveness is
context-specific and requires calibration and retraining to
be generalizable across different organizations or project
typologies. Future research should focus on several
promising directions. These include expanding the input
indicator set by integrating real-time data from IoT
sensors, benchmarking ANFIS performance against
other machine learning models, and developing the
MDSI model further to include prescriptive analytics.

Finally, longitudinal case studies are needed to
empirically validate the long-term impact of
implementing the PSAM on the sustainability

performance of real-world construction projects.
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Kuiscoruil Hayionaneruil yrHieepcumem 6yoigHuymea i apximexmypu, Kuig

METO/]I MIPOAKTUBHOT' O OIITHIOBAHHSA CTIMKOCTI BYJIIBEJbHUX ITPOEKTIB
HA OCHOBI HEMPO-HEYITKOI'O MOJEJIIOBAHHS

Anomauia. Egexmuene ynpagiinHs npoekmamu Cmanoeo po3eUumky 6 0yOieenbHill 2any3i YCKIAOHIOEMbCs uepe3
peakmugHull Xxapakmep mpaouyitinux mMemooie KOHmponio ma npobnemy inmezpayii 2emepoceHHux OAHux, Wo 6KII0YAIOMb
KITbKICHI MempuKu ma AKICHI eKCNepmHi OYIHKU, NPUMAMAHHI KpUumepiam eKon02I4H020, COYIanNbHO20 mMa KOPNOpamueHo20
ynpasninna (anen. Environmental, Social, and Governance, ESG). [{na eupiwienns yici npobaemu 6 cmammi 3anponoHo8aHo Memoo
NPOAKMUBHO20 OYIHIOBAHHS CIMIUKOCMI, peanizayis AKo2o nepeddauac immezpayilo KOMUAEKCY Mooeneil Oas (YyHKYIOHY8AHHS.
cucmemu pamnnbo20 nonepeodicenns. B ocnosi memody nedcumv aoanmuena Helpo-HedimKa cucmema GUCHOGYBAHHA (aH2IL.
Adaptive Neuro-Fuzzy Inference System, ANFIS), obpana 3a60sxu ii yHikanoHiti 30amHOCMI MOOen08amu CKAAOHI HeaiHiliHi
cucmemuy, O0OHOYACHO 006pO6AAIOUU HEOOHO3HAUHICMb MA HeGUIHAYEHICMb NOKA3HUKIE cmanozo po3eumxy. Iunnemenmayis
Memooy npoaKmueHo20 OYiHIOBAHHS CIIKOCMI 6Y0i8ebHUX NPOEKMIE NOYUHAECMbCA 13 3ACMOCY8ANHS PO3POONEHOI CMPYKIMYPHO-
cemanmuynoi Mooeni OaHux, sika Nepemeopioc PIHOPIOHI @XiOHI OaHi NPOEKMY HA YHIQIKOBAHUU 6XIOHUL 6EKMOP WLIAXOM IX
iepapxiunoi cmpykmypusayii, hHopmanizayii ma gazsugirayii. Cpopmosanuii 6eKmop ciyeye 0CHOB8010 0t 0OYUCTIOBATLHO0 50Pa
Memoody — npocHO3HOT Hellpo-HeyuimKkoi moderni, wo peanizosana na apximexmypi ANFIS. L[Js mooens, naguaiouuce na icmopuiHux
oanux, asmonomno 2emepye 6asy suanv newimxux npasun «AKL]O-TOy, eusasnae ueniuitini 3anedcHocmi ma npocHO3yE
inmezpanvhuil indexc npoaxmueHoi cmilikocmi (aunen. Proactive Sustainability Index, PSI). Kinyesi pesynbmamu npoenosHoi
MoOdeni inmepnpemyomsca 3a 00NOMO2010 OiA2HOCUYHOI MOOeNi NiOMpumKu piutenv, axa eizyanizye ounamiky PSI ma,
AHANI3YIOYU  HAUOIIbW  AKMUBOBAHI HEeWimKi Npasuid, GUKOHYE OIaeHOCMUKY NePUIONPUYUH NOMEHYIUHUX BIOXUIEeHD,
nepemeopioouy 004UCTIOBANbHI PE3VILIMAMU HA NPAKMUYHT YRpasninceKi incmpymenmu. Pe3ynomamom ybo2o docniodcenns €
me, Wo 3anpONOHOBAHU MeMOO, AKUL IPYHIMYEMbCA HA iHme2payii cmpyKmypHOo-cCeManmuyHoi, npoeHo3Hoi ma 0iazHOCMUYHOT
MoOenell, onepayionanizye HpoOaKmueHe YRPAGAIHHA 3d OONOMO20I0 Kepoganoi Oanumu cucmemu. Bin o6 ’ckmusizye oyinxy
CKNIAOHUX (hakmopie cmitikocmi, 00Aa4U PO3PUE MIJC SKICHUMU eKCREPMHUMU SHAHHAMY Ma KinbKicHumu oanumu. Ha eiominy
8I0 ICHYIOUUX MoOOenell WMYyYHO20 IHMeNeKnmy Mmuny «40opHa CKPUHbKA», Memoo 3abe3neuye npo3opy OiaeHOCMUKY 3a60sKu
iHmMepnpemo8aHoCcmi HeYimKux npasui NPOSHO3HOI Mooeli, wo niosuwye 006ipy 0o pesyrvmamis. Taxum YuHoM, po3poobreHuil
Memoo HAoae MeHeOdCMeHmy Oy0igenbHUX Opeani3ayili HAYKOBO OOIPYHMOBAHUL MA AOANMUBHULU [THCMPYMeHmapit o0s
nepeobauenHs pusuKie, noG A3AHUX 3i CIAIUM PO3GUMKOM, ONMUMI3AYii YNPaGiHCLKUX 6MPYUab mMa NOKPAUjeHHs 3a2albHUx
pe3yIbmamis npoEKmMy 6 OUHAMIYHOMY CEPeO0GUUYL.

Knwuogei cnosa: npoakmuene ynpaseninHa HPOEKMAMU; MEHEONCMEHM; CMAAUIl PO36UMOK; OyoieebHA 2a1y3b;
a0anmueHa Helpo-HewimKa CUucmema 6UCHOBY8AHHA; CUCIEMA RIOMPUMKU NPUTLHAMMA Piuienb; OYINKA PU3UKIE
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