Аннотації
14.11.2021
На основі закону всесвітнього тяжіння, прийнятого як точний закон, що описує парні взаємодії масивних тіл, враховано матеріальність гравітаційного поля. На відміну від Бріллюена і Люка, які першими провели таке врахування й отримали від’ємне значення польової маси, польова маса в пропонованій роботі має той самий знак, що і сама маса. Заміна уявлення маса – гравітаційне поле на маса – польова маса виокремлює гравітацію серед інших взаємодій, приводить до приросту маси в таких взаємодіях, вказує на існування подвійного ефекту гравітації та дозволяє проводити її фізичне моделювання. Зокрема показано, що, незважаючи на мале значення відносного приросту маси в парних взаємодіях, при утворенні скупчень зірок з великою кількістю тіл відносний приріст маси нелінійно зростає. За певних умов цей приріст стає нескінченним, символізуючи настання макромасштабного гравітаційного колапсу, який закінчується утворенням надмасивних чорних дір. Акцентовано увагу на тому, що кінцева маса надмасивної чорної діри (невидима маса) може в десятки і сотні разів перевищувати початкову масу скупчення (видиму масу). Причому половина маси чорної діри перебуває за межами гравітаційного радіуса чорної діри, утворюючи масивне невидиме гало. На думку авторів, макромасштабний колапс на основі врахування матеріальності гравітаційного поля може розглядатись як один з ефективних механізмів формування невидимої (темної) матерії у Всесвіті.
The materiality of the gravitational field is taken into account on the basis of the law of universal gravitation, accepted as an exact law describing the pairwise interactions of massive bodies. Unlike Brillouin and Lucas, who were the first to carry out such an account and obtain a negative value of the field mass, the field mass in our work has the same sign as the mass itself. Replacing the "mass-gravitational field" representation with "mass-field mass" distinguishes gravity from other interactions, leads to an increase in mass in such interactions, indicates the existence of a double effect of gravity and allows its physical modeling. In particular, it has been shown that, despite the small value of the relative mass gain in pair interactions, during the formation of clusters of stars with a large number of bodies, the relative mass gain increases nonlinearly. Under certain conditions, this increase becomes infinite, symbolizing the onset of a macroscale gravitational collapse, resulting in the formation of supermassive black holes. Attention is focused on the fact that the final mass of a supermassive black hole (invisible mass) can be tens and hundreds of times greater than the initial mass of the cluster (visible mass). Moreover, half of the black hole's mass is outside the gravitational radius of the black hole, forming a massive invisible halo. According to the authors, a macroscale collapse based on taking into account the materiality of the gravitational field can be considered as one of the effective mechanisms for the formation of invisible (dark) matter in the Universe.
- Brillouin, L. & Lucas, R. (1966). La relation masse-énergie en gravitation. J. Phys. France, 27, 3-4, 229–232.
- Brillouin, L. (1972). A new look at the theory of relativity. Moscow, Mir, 142.
- Dicke, R. (1972). Gravity and the Universe. Moscow, Mir, 103.
- Heaviside, O. (1893). A gravitional and electromagnetic analogy. Part I. The Electrician, 31, 281–282.
- Evans, M. W. (2011). Gravitational Poynting theorem: interaction of gravitation and electromagnetism. Journal of Foundations of Physics and Chemistry, 1(4), 433–440.
- Fedosin, S. G. (2008). Mass, Momentum and Energy of Gravitational Field. Journal of Vectorial Relativity, 3(3), 30-35.
- Klapchenko, V. I. (2019). Relativity and gravity. Problematic issues of physics. Kyiv, 136.
- Mach, Ernst. (1883). Die Mechanik in ihrer Entwickelung: historisch-kritisch dargestellt, 496.
- Einstein, A. (1967). Evolution of physics. Collected scientific works. Vol. 4. Moscow, Science.
- Soldner, J. G. (1804). Ueber die Ablenkung eines Lichtstrahls von seiner geradlinigen Bewegung, durch die Attraktion eines Weltkorpers, an welchem er nahe vorbei geht. Berliner Astronomisches Jahrbuch, 161–172.
- Mathematical encyclopedic dictionary. (1988). Moscow, Sov. Encyclopedia, 847.
- Lukash, V. N., Mikheeva, E. V. (2007). Dark matter: from initial conditions to the formation of the structure of the Universe. Advances in physical sciences, 177(10), 1023–1028.