Аннотації

Автор(и):
Гнатієнко О., Кучанський О.
Автор(и) (англ)
Hnatiienko O., Kuchanskyi O.
Дата публікації:

23.11.2023

Анотація (укр):

Описано концепцію системи підтримки прийняття рішення для забезпечення функціональної стійкості організаційної системи та математичну модель функціональної стійкості. Описано кілька способів переналаштування зв'язків між елементами системи для забезпечення функціональної стійкості системи у випадках, коли функціонування системи перебуває під загрозою через порушення або відсутність окремих елементів системи. Дано постановку проблеми сталого функціонування організаційної системи. Розглянуто окремі сфери людської діяльності та предметні області, в яких може бути застосована запропонована в цій роботі концепція. Запропоновано схеми організаційної системи, що ілюструють різні варіанти виконання функцій елементами організаційної системи. Запропоновано модель номінальної потреби в ресурсах при повній зайнятості. Також представлено модель заміни функцій, які виконує деякий елемент у штатній ситуації. Розглядалися ситуації, коли деякі елементи організаційної системи з різних причин не могли виконувати свої функції, вимагаючи реконфігурації. Деякі евристики вводяться для визначення ситуацій прийняття рішень, які виникають під час функціонування організаційної системи.

Анотація (рус):

Анотація (англ):

The support system concept is described as a solution for ensuring the functional stability of the organizational system and approaching the mathematical model of functional stability. Several ways of reconfiguring connections between system elements are described to ensure the functional stability of the system in cases where the system's functioning is at risk due to the violation or absence of some system elements. The formulation of the problem of sustainable functioning of the organizational system is given. Some areas of human activity and subject areas in which the concept proposed in this work can be applied are considered. Schemes of the organizational system are proposed, illustrating various options for the performance of functions by the elements of the organizational system. A model of nominal resource needs in a full-time situation is proposed. A model of replacing functions performed by some element in a regular situation is also provided. Situations were also considered when some elements of the organizational system could not perform their functions for various reasons, requiring reconfiguration. Some heuristics are introduced to define decision-making situations that arise during the functioning of the organizational system.

Література:

  1. Sanchis, R. & Poler, R. (2013). Definition of a framework to support strategic decisions to improve Enterprise Resilience. IFAC Proceedings, 46, 9, 700–705.
  2. Sabatino, M. (2016). Economic crisis and resilience: Resilient capacity and competitiveness of the enterprises. Journal of Business Research, 69, 5, 1924-1927.
  3. Pichkur, V. & Sobchuk, V. (2021). Mathematical models and control design of a functionally stable technological process. Journal Of Optimization, Differential Equations And Their Applications (JODEA), 29, 1, 1–11, DOI: 10.15421/141905
  4. Sobchuk, V., Olimpiyeva, Y., Musienko, A. & Sobchuk, A. (2021). Ensuring the properties of functional stability of manufacturing processes based on the application of neural networks. CEUR Workshop Proceedings, 2845, 106–116.
  5. Babenko, T., Hnatiienko, H. & Vialkova, V. (2020). Modeling of information security system and automated assessment of the integrated quality of the impact of controls on the functional stability of the organizational system. Selected Papers of the XX International Scientific and Practical Conference "Information Technologies and Security". CEUR Workshop Proceedings, 2859, 188–198.
  6. Voloshyn, O. F. & Mashcenko, S. O. (2018). Decision-making models and methods: teaching. manual for students higher education closing. Lyudmila Publishing House, 292.
  7. Hnatiienko, H., Snytyuk, V., Tmienova, N. & Voloshyn, O. (2021). Application of expert decision-making technologies for fair evaluation in testing problems. CEUR Workshop Proceedingsthis link is disabled, 2859, pp. 46–60.
  8. Mashkov, O. A. & Barabash, O. V. (2003). Synthesis of the structure of an automated system according to the criterion of maximum functional stability. Aerospace systems monitoring and management, 193–196.
  9. Barabash, O. V., Kozelkov, S. V. & Mashkov, O. A. (2005). Understandable apparatus of functional efficiency of information-critical systems. Collection of scientific works NTs VPS ZS Ukraine, 7, 87–95.
  10. Mashkov, O. V., Kononov, D. A. & Pekarev, D. V. (2006). Methods of building functionally stable complex dynamic systems. Visnyk ZhDTU, 93–103.
  11. Kravchenko, Y. & Vialkova, V. (2016). The problem of providing functional stability properties of information security systems. Modern Problems of Radio Engineering, Telecommunications and Computer Science, Proceedings of the 13th International Conference on TCSET 2016, 526–530.
  12. Mashkov, O. A., Chumakevich, V. A., Mamchur, Y. V. & Kosenko V. R. (2020). The method of inverse problems of dynamics for the synthesis of a system of stabilization of the movement of a dynamic object on operatively programmable trajectories. Mathematical Modeling and Computing, 7, 1, 29–38. DOI: 10.23939/mmc2020.01.029.
  13. Babenko, T., Hnatiienko, H., Ignisca, V. & Iavich, M. (2021). Modeling of critical nodes in complex poorly structured organizational systems. Proceedings of the 26th International Conference on Information Society and University Studies (IVUS 2021). CEUR Workshop Proceedings, 2915, 92–101.
  14. Xu, H., Kuchansky, A., Gladka, M. (2021). Devising an individually oriented method for selection of scientific activity subjects for implementing scientific projects based on scientometric analysis. Eastern-European Journal of Enterprise Technologies, 6 (3 (114)), 93–100. DOI: 10.15587/1729-4061.2021.248040.
  15. Bushuyev, D., Bushuieva, V., Kozyr, B. & Ugay, A. (2020). Erosion of competencies of innovative digitalization projects. Scientific Journal of Astana IT University, (1), 70-83. DOI: 10.37943/AITU.2020.1.63658.
  16. Biloshchytskyi, A., Kuchansky, A., Andrashko, Y., Omirbayev, S., Mukhatayev, A., Faizullin, A. & Toxanov, S. (2021). Development of the Set Models and a Method to form Information Spaces of Scientific Activity Subjects for the Steady Development of Higher Education Establishments. Eastern-European Journal of Enterprise Technologies, 3, 6–14. DOI: 10.15587/1729-4061.2021.233655.
  17. Kuchansky, A., Biloshchytskyi, A., Andrashko, Y. & Wang, Yingxing. (2022). Devising A Competence Method To Build Information Spaces For Executors of Educational Projects in a Dynamic Environment. Eastern-European Journal of Enterprise Technologies, 1 (3 (115)), 66–73, 2022, DOI: 10.15587/1729-4061.2022.253043.
  18. Dodonov, O. G., Gorbachyk, O. S., Kuznetsova M. G. (2021). Automated systems of organizational management of critical infrastructure objects: safety and functional stability. Information technologies and safety. Materials of the XXI International Scientific and Practical Conference ITB-2021, 3–8.

References:

  1. Sanchis, R. & Poler, R. (2013). Definition of a framework to support strategic decisions to improve Enterprise Resilience. IFAC Proceedings, 46, 9, 700–705.
  2. Sabatino, M. (2016). Economic crisis and resilience: Resilient capacity and competitiveness of the enterprises. Journal of Business Research, 69, 5, 1924-1927.
  3. Pichkur, V. & Sobchuk, V. (2021). Mathematical models and control design of a functionally stable technological process. Journal Of Optimization, Differential Equations And Their Applications (JODEA), 29, 1, 1–11, DOI: 10.15421/141905
  4. Sobchuk, V., Olimpiyeva, Y., Musienko, A. & Sobchuk, A. (2021). Ensuring the properties of functional stability of manufacturing processes based on the application of neural networks. CEUR Workshop Proceedings, 2845, 106–116.
  5. Babenko, T., Hnatiienko, H. & Vialkova, V. (2020). Modeling of information security system and automated assessment of the integrated quality of the impact of controls on the functional stability of the organizational system. Selected Papers of the XX International Scientific and Practical Conference "Information Technologies and Security". CEUR Workshop Proceedings, 2859, 188–198.
  6. Voloshyn, O. F. & Mashcenko, S. O. (2018). Decision-making models and methods: teaching. manual for students higher education closing. Lyudmila Publishing House, 292.
  7. Hnatiienko, H., Snytyuk, V., Tmienova, N. & Voloshyn, O. (2021). Application of expert decision-making technologies for fair evaluation in testing problems. CEUR Workshop Proceedingsthis link is disabled, 2859, pp. 46–60.
  8. Mashkov, O. A. & Barabash, O. V. (2003). Synthesis of the structure of an automated system according to the criterion of maximum functional stability. Aerospace systems monitoring and management, 193–196.
  9. Barabash, O. V., Kozelkov, S. V. & Mashkov, O. A. (2005). Understandable apparatus of functional efficiency of information-critical systems. Collection of scientific works NTs VPS ZS Ukraine, 7, 87–95.
  10. Mashkov, O. V., Kononov, D. A. & Pekarev, D. V. (2006). Methods of building functionally stable complex dynamic systems. Visnyk ZhDTU, 93–103.
  11. Kravchenko, Y. & Vialkova, V. (2016). The problem of providing functional stability properties of information security systems. Modern Problems of Radio Engineering, Telecommunications and Computer Science, Proceedings of the 13th International Conference on TCSET 2016, 526–530.
  12. Mashkov, O. A., Chumakevich, V. A., Mamchur, Y. V. & Kosenko V. R. (2020). The method of inverse problems of dynamics for the synthesis of a system of stabilization of the movement of a dynamic object on operatively programmable trajectories. Mathematical Modeling and Computing, 7, 1, 29–38. DOI: 10.23939/mmc2020.01.029.
  13. Babenko, T., Hnatiienko, H., Ignisca, V. & Iavich, M. (2021). Modeling of critical nodes in complex poorly structured organizational systems. Proceedings of the 26th International Conference on Information Society and University Studies (IVUS 2021). CEUR Workshop Proceedings, 2915, 92–101.
  14. Xu, H., Kuchansky, A., Gladka, M. (2021). Devising an individually oriented method for selection of scientific activity subjects for implementing scientific projects based on scientometric analysis. Eastern-European Journal of Enterprise Technologies, 6 (3 (114)), 93–100. DOI: 10.15587/1729-4061.2021.248040.
  15. Bushuyev, D., Bushuieva, V., Kozyr, B. & Ugay, A. (2020). Erosion of competencies of innovative digitalization projects. Scientific Journal of Astana IT University, (1), 70-83. DOI: 10.37943/AITU.2020.1.63658.
  16. Biloshchytskyi, A., Kuchansky, A., Andrashko, Y., Omirbayev, S., Mukhatayev, A., Faizullin, A. & Toxanov, S. (2021). Development of the Set Models and a Method to form Information Spaces of Scientific Activity Subjects for the Steady Development of Higher Education Establishments. Eastern-European Journal of Enterprise Technologies, 3, 6–14. DOI: 10.15587/1729-4061.2021.233655.
  17. Kuchansky, A., Biloshchytskyi, A., Andrashko, Y. & Wang, Yingxing. (2022). Devising A Competence Method To Build Information Spaces For Executors of Educational Projects in a Dynamic Environment. Eastern-European Journal of Enterprise Technologies, 1 (3 (115)), 66–73, 2022, DOI: 10.15587/1729-4061.2022.253043.
  18. Dodonov, O. G., Gorbachyk, O. S., Kuznetsova M. G. (2021). Automated systems of organizational management of critical infrastructure objects: safety and functional stability. Information technologies and safety. Materials of the XXI International Scientific and Practical Conference ITB-2021, 3–8.