Аннотації
30.11.2023
В роботі сформовано шість ключових параметрів конкурентоспроможності закладу вищої освіти: наукові дослідження та практична розробка; стійкість на освітньому ринку послуг; адаптивність до змін; співпраця та участь у альянсах, проєктах, кластерах; рівень компетентності науково-педагогічних співробітників. Оцінка фінансового стану закладу вищої освіти включає як фінансові можливості університету для розвитку, так і фінансову доступність, тобто забезпечення можливості навчання студентам різних груп, інклюзивна освіта тощо. Сформований перелік відрізняється від традиційного тим, що дає змогу врахувати в оцінці як класичні, так і спеціалізовані заклади вищої освіти незалежно від напряму діяльності. Визначено, що для аналізу конкурентоспроможності потрібно використовувати методи, які засновані на попартному порівнянні. Оскільки методики оцінювання цих параметрів різні, то одним з методів, що може підійти для оцінювання конкурентоспроможності, є метод DEA. Встановлено, що невивченими залишаються питання інтерпретації результатів DEA, враховуючи модифікації оптимізаційної задачі оцінки конкурентоспроможності закладів вищої освіти. Вказано, що для застосування моделі потрібно зібрати вхідні та вихідні параметри й інтерпретувати отримані результати. Для побудови системи моніторингу конкурентоспроможності закладу вищої освіти потрібно зібрати дані про різні види активності закладу вищої освіти протягом деякого періоду часу і зберегти їх для опрацювання. Дані мають бути відкриті, верифіковані та прозорі, їх має бути легко перевірити. Вони мають бути позбавлені впливу суб'єктивного фактору. Це важливо, щоб забезпечити неупереджену оцінку діяльності закладу вищої освіти. Отримані результати мають значення для розробників систем оцінювання і моніторингу конкурентоспроможності закладів вищої освіти.
Six critical parameters of the competitiveness of a higher education institution were formed: scientific research and practical development, stability in the educational service market, adaptability to changes, cooperation and participation in alliances, projects, clusters, the level of competence of scientific and pedagogical employees, assessment of the financial condition of the higher education institution education. It includes the university's financial capacity for development and financial accessibility, i.e. providing the opportunity to study for students of different groups, inclusive education, etc. The formed list differs from the traditional one in that it allows consideration of both classical and specialized higher education institutions in the evaluation, regardless of the field of activity. It was determined that to analyze competitiveness, it is necessary to use methods based on pairwise comparison. Since the methods of assessing these parameters are different, one of the methods that can be suitable for assessing competitiveness is the DEA method. It was found that the interpretation of DEA results, considering the modifications of the optimization task of assessing the competitiveness of higher education institutions, still needs to be explored. It is indicated that to apply the model, it is necessary to collect input and output parameters and interpret the obtained results. To build a system for monitoring the competitiveness of a higher education institution, it is necessary to collect data on various types of activity of a higher education institution over a certain period and save them for processing. Data should be open, verifiable, transparent, and easy to verify. They should be free from the influence of the subjective factor. This is important to ensure an unbiased assessment of the institution's activities. The obtained results are essential for developers of systems for evaluating and monitoring the competitiveness of higher education institutions.
- Liu, Y. R. (2018). Innovation and practical exploration of teaching reform of continuing education guided by social competitiveness – Taking the practice of overseas Chinese higher education institutions as the research object. Continuing Education, 3, 7-10. https://doi.org/ 10.13981/j.cnki.cn11-3315/g4.2018.03.002.
- Kang, K. & Gao, X. J. (2019). The Core of the Construction of Advanced Higher Education System in China: Improving the Competitiveness of Higher Education. Journal of Adolescent Health, 7, 8-13.
- Kuchansky, A., Biloshchytskyi, A., Andrashko, Y., Biloshchytska, S. & Faizullin, A. (2022). The Scientific Productivity of Collective Subjects Based on the Time-Weighted PageRank Method with Citation Intensity. Publications, 10(4), 40, 1–17.
- Andrashko, Y., Kuchanskyi, O., Biloshchytskyi, A., Pohoriliak, O., Gladka, M., Slyvka-Tylyshchak, G., Khlaponin, D. & Chychkan, I. (2023). A method for assessing the productivity trends of collective scientific subjects based on the modified PageRank algorithm. Eastern-European Journal of Enterprise Technologies, 1(4 (121), 41–47.
- Biloshchytskyi, A., Biloshchytska, S., Kuchansky, A., Andrashko, Y., Toxanov, S. & Faizullin, A. (2022). Information-analytical system for evaluating the scientific performance of structural units of universities and research institutes based on the approach of constructing complex integral evaluation. Scientific Journal of Astana IT University, 11, 87–117.
- Biloshchytskyi, A., Andrashko, Y., Kuchansky, A., Faizullin, A. & Toxanov, S. (2022). Model of multi-criteria selection of scientists and higher education institutions for the scientific organization. Scientific Bulletin of Uzhhorod University. Series of Mathematics and Informatics, 41(2), 7–15 (in Ukr.).
- Biloshchytskyi, A., Kuchansky, A., Andrashko, Y. & Wang, Y. (2022). Devising a competence method to build information spaces for executors of educational projects in a dynamic environment. Eastern-European Journal of Enterprise Technologies, 1(3(115)), 66–73.
- Raman, A. (2019). Potentials of fog computing in higher education. International Journal of Emerging Technologies in Learning, 14(18), 194-202. https://doi.org/10.3991/ijet.v14 i18.10765
- Liu, N. N. (2017). A Study on the Competitiveness and Coordinated Development of the Provincial Graduate Education in China. Modern Education Management, 9, 102-107. https://doi.org/10.16697/j.cnki.xdjygl.2017.09.019.
- Zhou, C. T. (2019). Research and Practice on the core competitiveness of Local Universities under the background of education internationalization. Policy Research & Exploration, 5, 52-53. https://doi.org/ 10.16324/j.cnki.jcts.2019.05.039.
- Wen, X., Hu, Y. X. & Yin, Y. N. (2019). Individualized Evaluation and Promotion Strategy of Regional Higher Education Competitiveness. Modern Education Management, 12, 30-35. https://doi.org/10.16697/j.cnki.xdjygl.2019.12.005.
- Dugarova, D., Kimova, S. & Kalinina, L. (2015). Educational Audit as an Imperative of Higher Education Program Competitiveness in the Trans-Border Region. Procedia – Social and Behavioral Sciences, 214, 192–200. https://doi.org/10.1016/j.sbspro.2015.11.661.
- Nicole, C. J. (2019). Managing for competency with innovation change in higher education: Examining the pitfalls and pivots of digital transformation. Business Horizons, 62(6), 761- 772. https://doi.org/10.1016/j.bushor.2019.08.002.
- Wang, S. & Fang, Y. (2012). Higher Education Competitiveness: Model, Index and International Comparison. Educational Research, 7, 122-129.
- Plewa, C., Ho, J., Conduit, J. & Karpen, I.O. (2016). Reputation in higher education: A fuzzy set analysis of resource configurations. Journal of Business Research, 69(8), 3087-3095. https://doi.org/10.1016/j.jbusres.2016.01.024.
- Lin, L. (2020). An Evaluation System and Its Model for Educational Competitiveness of Universities. iJET, 15(11), 188-201. https://doi.org/10.3991/ijet.v15i11.14521
- Cooper, W. W., Li, S., Seiford, L. M., Tone. K., Thrall, R. M., & Zhu, J. (2001). Sensitivity and stability analysis in DEA: some recent developments. Journal of productivity analysis, 15(3), 217–246.
- Charnes, A., Cooper, W. W. & Rhodes, E. L. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.
- Liu, Y. R. (2018). Innovation and practical exploration of teaching reform of continuing education guided by social competitiveness – Taking the practice of overseas Chinese higher education institutions as the research object. Continuing Education, 3, 7-10. https://doi.org/ 10.13981/j.cnki.cn11-3315/g4.2018.03.002.
- Kang, K. & Gao, X. J. (2019). The Core of the Construction of Advanced Higher Education System in China: Improving the Competitiveness of Higher Education. Journal of Adolescent Health, 7, 8-13.
- Kuchansky, A., Biloshchytskyi, A., Andrashko, Y., Biloshchytska, S. & Faizullin, A. (2022). The Scientific Productivity of Collective Subjects Based on the Time-Weighted PageRank Method with Citation Intensity. Publications, 10(4), 40, 1–17.
- Andrashko, Y., Kuchanskyi, O., Biloshchytskyi, A., Pohoriliak, O., Gladka, M., Slyvka-Tylyshchak, G., Khlaponin, D. & Chychkan, I. (2023). A method for assessing the productivity trends of collective scientific subjects based on the modified PageRank algorithm. Eastern-European Journal of Enterprise Technologies, 1(4 (121), 41–47.
- Biloshchytskyi, A., Biloshchytska, S., Kuchansky, A., Andrashko, Y., Toxanov, S. & Faizullin, A. (2022). Information-analytical system for evaluating the scientific performance of structural units of universities and research institutes based on the approach of constructing complex integral evaluation. Scientific Journal of Astana IT University, 11, 87–117.
- Biloshchytskyi, A., Andrashko, Y., Kuchansky, A., Faizullin, A. & Toxanov, S. (2022). Model of multi-criteria selection of scientists and higher education institutions for the scientific organization. Scientific Bulletin of Uzhhorod University. Series of Mathematics and Informatics, 41(2), 7–15 (in Ukr.).
- Biloshchytskyi, A., Kuchansky, A., Andrashko, Y. & Wang, Y. (2022). Devising a competence method to build information spaces for executors of educational projects in a dynamic environment. Eastern-European Journal of Enterprise Technologies, 1(3(115)), 66–73.
- Raman, A. (2019). Potentials of fog computing in higher education. International Journal of Emerging Technologies in Learning, 14(18), 194-202. https://doi.org/10.3991/ijet.v14 i18.10765
- Liu, N. N. (2017). A Study on the Competitiveness and Coordinated Development of the Provincial Graduate Education in China. Modern Education Management, 9, 102-107. https://doi.org/10.16697/j.cnki.xdjygl.2017.09.019.
- Zhou, C. T. (2019). Research and Practice on the core competitiveness of Local Universities under the background of education internationalization. Policy Research & Exploration, 5, 52-53. https://doi.org/ 10.16324/j.cnki.jcts.2019.05.039.
- Wen, X., Hu, Y. X. & Yin, Y. N. (2019). Individualized Evaluation and Promotion Strategy of Regional Higher Education Competitiveness. Modern Education Management, 12, 30-35. https://doi.org/10.16697/j.cnki.xdjygl.2019.12.005.
- Dugarova, D., Kimova, S. & Kalinina, L. (2015). Educational Audit as an Imperative of Higher Education Program Competitiveness in the Trans-Border Region. Procedia – Social and Behavioral Sciences, 214, 192–200. https://doi.org/10.1016/j.sbspro.2015.11.661.
- Nicole, C. J. (2019). Managing for competency with innovation change in higher education: Examining the pitfalls and pivots of digital transformation. Business Horizons, 62(6), 761- 772. https://doi.org/10.1016/j.bushor.2019.08.002.
- Wang, S. & Fang, Y. (2012). Higher Education Competitiveness: Model, Index and International Comparison. Educational Research, 7, 122-129.
- Plewa, C., Ho, J., Conduit, J. & Karpen, I.O. (2016). Reputation in higher education: A fuzzy set analysis of resource configurations. Journal of Business Research, 69(8), 3087-3095. https://doi.org/10.1016/j.jbusres.2016.01.024.
- Lin, L. (2020). An Evaluation System and Its Model for Educational Competitiveness of Universities. iJET, 15(11), 188-201. https://doi.org/10.3991/ijet.v15i11.14521
- Cooper, W. W., Li, S., Seiford, L. M., Tone. K., Thrall, R. M., & Zhu, J. (2001). Sensitivity and stability analysis in DEA: some recent developments. Journal of productivity analysis, 15(3), 217–246.
- Charnes, A., Cooper, W. W. & Rhodes, E. L. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.