Аннотації

Автор(и):
Черненко Ю. В., Семко О. В., Березенський Р. В.
Автор(и) (англ)
Chernenko Yu., Semko A., Веrezenskyi R.
Дата публікації:

27.06.2025

Анотація (укр):

Комунальні підприємства (КП) все частіше працюють у нестабільному середовищі, яке характеризується геополітичною напруженістю, перебоями в роботі інфраструктури та мобілізацією робочої сили, що ставить під загрозу надання основних послуг. У цьому дослідженні пропонується гібридна модель управління ризиками, що поєднує системи планування ресурсів підприємства (ERP) та управління бізнес-процесами (BPMS) з евристичним прийняттям рішень і прогнозною аналітикою. Використовуючи змішаний підхід, ми проаналізували ключові показники ефективності (KPI), включаючи час реагування, використання ресурсів та безперервність, отримані з системи BOS CIS в компанії «Мастергаз» (українське комунальне підприємство). Порівняння до і після інтеграції показало скорочення часу реагування на 50%, зниження логістичних витрат на 20% і підвищення безперервності на 90%. Якісний тематичний аналіз 15 інтерв'ю підтвердив, що покращення прозорості, готовності та децентралізованого прийняття рішень узгоджуються з цими досягненнями KPI. Сценарні симуляції (в тому числі за методом Монте-Карло) підтвердили правильність моделі в умовах втрати інфраструктури та дефіциту робочої сили. Ці комплексні результати підтверджують гіпотезу про те, що інтегрована модель ERP-системи управління підприємством, яка ґрунтується на кількісних та якісних показниках, підвищує гнучкість, економічну ефективність та стійкість. Ця система пропонує керівникам комунальних підприємств адаптивний інструмент для проактивного антикризового управління за різних сценаріїв, що базується на даних.

Анотація (рус):

Анотація (англ):

Public utility enterprises (PUEs) increasingly operate in volatile environments characterized by geopolitical tensions, infrastructure disruptions, and workforce mobilization, all threatening essential services. This study proposes a hybrid risk management model integrating Enterprise Resource Planning (ERP) and Business Process Management Systems (BPMS) with heuristic decision-making and predictive analytics. Using a mixed-methods approach, we analyzed key performance indicators (KPIs) – including response times, resource utilization, and continuity – extracted from BOS CIS at Mastergaz (a Ukrainian utility). Pre- and post-integration comparisons showed a 50% reduction in response times, 20% lower logistical costs, and continuity above 90%. A qualitative thematic analysis of 15 interviews confirmed that improved transparency, preparedness, and decentralized decision-making aligned with these KPI gains. Scenario-based simulations (including Monte Carlo) validated the model under infrastructure loss and workforce shortages. These integrated findings support the hypothesis that an ERP-BPMS integrated model grounded in both quantitative and qualitative metrics enhances agility, cost-effectiveness, and resilience. This framework offers utility leaders a data-driven, adaptable tool for proactive crisis management across diverse scenarios.

Література:

1.     Bundy, J., Pfarrer, M. D., Short, C. E., and Coombs, W. T. (2017), “Crises and crisis management: Integration, interpretation, and research development”, Journal of Management, Vol. 43, No. 6, pp. 1661–1692. DOI: 10.1177/0149206316680030.

2.     Ensslin, L., Ensslin, S.R., Dutra, A., Nunes, N. A., and Reis, C. (2017), “BPM governance: A literature analysis of performance evaluation”, Business Process Management Journal, Vol. 23, No. 1, pp. 71–86. DOI: 10.1108/BPMJ-11-2015-0159.

3.     Peronja, I. (2015), “Redesign and improvement of support processes to improve business processes in crises – Case study: Water and sewerage split company”, International Journal of Business and Management, Vol. III, No. 2, pp. 45–65. DOI: 10.20472/BM.2015.3.2.004.

4.     Lucas, A. and Edwards, M. (2017), “Development of crisis resource management skills: A literature review”, Clinical Simulation in Nursing, Vol. 13, No. 8, pp. 347–358. DOI: 10.1016/J.ECNS.2017.04.006.

5.     Arbogast, G., Nackashi, J., Rittscher, A., and Thornton, B. (2008), “Enterprise resource planning and business process management – A marriage of convenience?”, Review of Business Information Systems, Vol. 12, No. 3. DOI: 10.19030/RBIS.V12I3.4348.

6.     Alves, J. L., Ferreira, E. A., and De Nadae, J. (2021), “Crisis and risks in engineering project management: A review”, Brazilian Journal of Operations and Production Management, Vol. 18, No. 4, pp. 1–17. DOI: 10.14488/BJOPM.2021.026.

7.     Amiri, M. M. and Kazerooni, M. (2014), “Information architecture of ERP systems for ‘public utilities’”, International Journal of Business Information Systems, Vol. 15, No. 4, pp. 373–391. DOI: 10.1504/IJBIS.2014.060375

8.     Houy, C., Fettke, P., and Loos, P. (2010), “Empirical research in business process management – Analysis of an emerging field of research”, Business Process Management Journal, Vol. 16, No. 4, pp. 619–661. DOI: 10.1108/14637151011065946.

9.     TohidiFar, A., Mousavi, M., and Alvanchi, A. (2021), “A hybrid BIM and BN-based model to improve the resiliency of hospitals’ utility systems in disasters”, International Journal of Disaster Risk Reduction, Vol. 57, 102176. DOI: 10.1016/J.IJDRR.2021.102176.

10.  Haider, M. and Rasli, A. (2015), “A proposed model to enhance crisis management capabilities of electricity production and supply companies in Pakistan”, Jurnal Teknologi, Vol. 72, No. 5, pp. 83–88. DOI: 10.11113/JT.V72.3945.

11.  Abimbola, M. and Khan, F. (2019), “Resilience modeling of engineering systems using dynamic object-oriented Bayesian network approach”, Computers and Industrial Engineering, Vol. 130, pp. 108–118. DOI: 10.1016/J.CIE.2019.02.022.

12.  Kapur, P.K., Nagpal, S., Khatri, S.K., and Yadavalli, V.S.S. (2014), “Critical success factor utility based tool for ERP health assessment: A general framework”, International Journal of System Assurance Engineering and Management, Vol. 5, No. 2, pp. 133–148. DOI: 10.1007/s13198-014-0223-8.

13.  Lei, Y., Wang, J., Yue, Y., Zhou, H., & Yin, W. (2014). Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Natural Hazards, 70(1), 609–627. https://doi.org/10.1007/s11069-013-0831-7.

14.  Linna, P., Leppaniemi, J., Soini, J., and Jaakkola, H. (2009), “Harmonizing emergency management knowledge representation” Portland International Conference on Management of Engineering & Technology, 1047–1051, p. 1047–1051. DOI: 10.1109/PICMET.2009.5262033.

15.  Nawaz, A., Hafeez, G., Khan, I., Jan, K. U., Li, H., Khan, S. A., and Wadud, Z. (2020), “An intelligent integrated approach for efficient demand side management with forecaster and advanced metering infrastructure frameworks in smart grid”, IEEE Access, Vol. 8, pp. 132551–132581. DOI: 10.1109/ACCESS.2020.3007095.

16.  Hassanein, A. (2013), “ERP versus BPM OR ERP and BPM Integrated. Software engineering and technology”, Vol. 5, pp. 171–175.

17.  Manab, N. A. and Aziz, N. A. A. (2019), “Integrating knowledge management in sustainability risk management practices for company survival”, Management Science Letters, pp. 585–594. DOI: 10.5267/J.MSL.2019.1.004.

18.  Landegren, F., Samuelsson, O., and Johansson, J. (2016). A hybrid modell for assessing resilience of electricity networks. 16th International Conference on Environment and Electrical Engineering (EEEIC), 1–6, IEEE. DOI: 10.1109/EEEIC.2016.7555612.

19.  Gürbüz, T., Alptekin, S. E., and Işıklar Alptekin, G. (2012), “A hybrid MCDM methodology for ERP selection problem with interacting criteria”, Decision Support Systems, Vol. 54, No. 1, pp. 206–214. DOI: 10.1016/j.dss.2012.05.006

20.  Syed, R., Bandara, W., French, E., and Stewart, G. (2018), “Getting it right! Critical success factors of BPM in the public sector: A systematic literature review”, Australasian Journal of Information Systems, Vol. 22. DOI: 10.3127/AJIS.V22I0.1265.

21.  Zafar, I., Azam, F., Anwar, M. W., Maqbool, B., Butt, W. H., and Nazir, A. (2019), “A novel framework to automatically generate executable web services from BPMN models”, IEEE Access, Vol. 7, pp. 93653–93677. DOI: 10.1109/ACCESS.2019.2927785.

22.  Kilic, H. S., Zaim, S., & Delen, D. (2015). Selecting "The Best" ERP system for SMEs using a combination of ANP and PROMETHEE methods. Expert Systems with Applications, 42 (5), 2343-2352. https://doi.org/10.1016/j.eswa.2014.10.034.

23.  Shafiee, M. E., Berglund, E. Z., and Lindell, M. K. (2018), “An agent-based modeling framework for assessing the public health protection of water advisories”, Water Resources Management, Vol. 32, No. 6, pp. 2033–2059. DOI: 10.1007/s11269-018-1916-6.

24.  Zhou, L., Chen, R., Tang, X., Ke, F., Liu, W., Ren, L., and Zhang, L. (2022), “Research on comprehensive utility evaluation model of the infrastructure ERP system” 7th Asia Conference on Power and Electrical Engineering (ACPEE), 874–879. DOI: 10.1109/ACPEE53904.2022.9783855

25.  Creswell, J. W. (2014), Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.), Sage Publications, Thousand Oaks, CA.

26.  Akter, S. and Wamba, S. F. (2019), “Big data and disaster management: A systematic review and agenda for future research”, Annals of Operations Research, Vol. 283, No. 1–2, pp. 939–959. DOI: 10.1007/s10479-017-2584-2.

27.  Mahendrawathi, E., Hanggara, B. T., and Astuti, H. M. (2019), “Model for BPM implementation assessment: Evidence from companies in Indonesia”, Business Process Management Journal, Vol. 25, No. 5, pp. 825–859. DOI: 10.1108/BPMJ-08-2016-0160.

28.  Tashakkori, A. and Teddlie, C. (2010), SAGE Handbook of Mixed Methods in Social & Behavioral Research, Sage Publications, Inc. DOI: 10.4135/9781506335193

29.  Avanzi, D. S., Foggiatto, A., dos Santos, V. A., Deschamps, F., de Freitas Rocha Loures, E. (2017), “A framework for interoperability assessment in crisis management”, Journal of Industrial Information Integration, Vol. 5, pp. 26–38. DOI: 10.1016/J.JII.2017.02.004.

30.  Lubis, M., Parmita, E., and Winiyanti Lumingkewas, L. (2020), “ERP implementation in crisis management: A case study of government-owned electricity company”, IOP Conference Series: Materials Science and Engineering, Vol. 847, No. 1. DOI: 10.1088/1757-899X/847/1/012081

References:

1.     Bundy, J., Pfarrer, M. D., Short, C. E., and Coombs, W. T. (2017), “Crises and crisis management: Integration, interpretation, and research development”, Journal of Management, Vol. 43, No. 6, pp. 1661–1692. DOI: 10.1177/0149206316680030.

2.     Ensslin, L., Ensslin, S.R., Dutra, A., Nunes, N. A., and Reis, C. (2017), “BPM governance: A literature analysis of performance evaluation”, Business Process Management Journal, Vol. 23, No. 1, pp. 71–86. DOI: 10.1108/BPMJ-11-2015-0159.

3.     Peronja, I. (2015), “Redesign and improvement of support processes to improve business processes in crises – Case study: Water and sewerage split company”, International Journal of Business and Management, Vol. III, No. 2, pp. 45–65. DOI: 10.20472/BM.2015.3.2.004.

4.     Lucas, A. and Edwards, M. (2017), “Development of crisis resource management skills: A literature review”, Clinical Simulation in Nursing, Vol. 13, No. 8, pp. 347–358. DOI: 10.1016/J.ECNS.2017.04.006.

5.     Arbogast, G., Nackashi, J., Rittscher, A., and Thornton, B. (2008), “Enterprise resource planning and business process management – A marriage of convenience?”, Review of Business Information Systems, Vol. 12, No. 3. DOI: 10.19030/RBIS.V12I3.4348.

6.     Alves, J. L., Ferreira, E. A., and De Nadae, J. (2021), “Crisis and risks in engineering project management: A review”, Brazilian Journal of Operations and Production Management, Vol. 18, No. 4, pp. 1–17. DOI: 10.14488/BJOPM.2021.026.

7.     Amiri, M. M. and Kazerooni, M. (2014), “Information architecture of ERP systems for ‘public utilities’”, International Journal of Business Information Systems, Vol. 15, No. 4, pp. 373–391. DOI: 10.1504/IJBIS.2014.060375

8.     Houy, C., Fettke, P., and Loos, P. (2010), “Empirical research in business process management – Analysis of an emerging field of research”, Business Process Management Journal, Vol. 16, No. 4, pp. 619–661. DOI: 10.1108/14637151011065946.

9.     TohidiFar, A., Mousavi, M., and Alvanchi, A. (2021), “A hybrid BIM and BN-based model to improve the resiliency of hospitals’ utility systems in disasters”, International Journal of Disaster Risk Reduction, Vol. 57, 102176. DOI: 10.1016/J.IJDRR.2021.102176.

10.  Haider, M. and Rasli, A. (2015), “A proposed model to enhance crisis management capabilities of electricity production and supply companies in Pakistan”, Jurnal Teknologi, Vol. 72, No. 5, pp. 83–88. DOI: 10.11113/JT.V72.3945.

11.  Abimbola, M. and Khan, F. (2019), “Resilience modeling of engineering systems using dynamic object-oriented Bayesian network approach”, Computers and Industrial Engineering, Vol. 130, pp. 108–118. DOI: 10.1016/J.CIE.2019.02.022.

12.  Kapur, P.K., Nagpal, S., Khatri, S.K., and Yadavalli, V.S.S. (2014), “Critical success factor utility based tool for ERP health assessment: A general framework”, International Journal of System Assurance Engineering and Management, Vol. 5, No. 2, pp. 133–148. DOI: 10.1007/s13198-014-0223-8.

13.  Lei, Y., Wang, J., Yue, Y., Zhou, H., & Yin, W. (2014). Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Natural Hazards, 70(1), 609–627. https://doi.org/10.1007/s11069-013-0831-7.

14.  Linna, P., Leppaniemi, J., Soini, J., and Jaakkola, H. (2009), “Harmonizing emergency management knowledge representation” Portland International Conference on Management of Engineering & Technology, 1047–1051, p. 1047–1051. DOI: 10.1109/PICMET.2009.5262033.

15.  Nawaz, A., Hafeez, G., Khan, I., Jan, K. U., Li, H., Khan, S. A., and Wadud, Z. (2020), “An intelligent integrated approach for efficient demand side management with forecaster and advanced metering infrastructure frameworks in smart grid”, IEEE Access, Vol. 8, pp. 132551–132581. DOI: 10.1109/ACCESS.2020.3007095.

16.  Hassanein, A. (2013), “ERP versus BPM OR ERP and BPM Integrated. Software engineering and technology”, Vol. 5, pp. 171–175.

17.  Manab, N. A. and Aziz, N. A. A. (2019), “Integrating knowledge management in sustainability risk management practices for company survival”, Management Science Letters, pp. 585–594. DOI: 10.5267/J.MSL.2019.1.004.

18.  Landegren, F., Samuelsson, O., and Johansson, J. (2016). A hybrid modell for assessing resilience of electricity networks. 16th International Conference on Environment and Electrical Engineering (EEEIC), 1–6, IEEE. DOI: 10.1109/EEEIC.2016.7555612.

19.  Gürbüz, T., Alptekin, S. E., and Işıklar Alptekin, G. (2012), “A hybrid MCDM methodology for ERP selection problem with interacting criteria”, Decision Support Systems, Vol. 54, No. 1, pp. 206–214. DOI: 10.1016/j.dss.2012.05.006

20.  Syed, R., Bandara, W., French, E., and Stewart, G. (2018), “Getting it right! Critical success factors of BPM in the public sector: A systematic literature review”, Australasian Journal of Information Systems, Vol. 22. DOI: 10.3127/AJIS.V22I0.1265.

21.  Zafar, I., Azam, F., Anwar, M. W., Maqbool, B., Butt, W. H., and Nazir, A. (2019), “A novel framework to automatically generate executable web services from BPMN models”, IEEE Access, Vol. 7, pp. 93653–93677. DOI: 10.1109/ACCESS.2019.2927785.

22.  Kilic, H. S., Zaim, S., & Delen, D. (2015). Selecting "The Best" ERP system for SMEs using a combination of ANP and PROMETHEE methods. Expert Systems with Applications, 42 (5), 2343-2352. https://doi.org/10.1016/j.eswa.2014.10.034.

23.  Shafiee, M. E., Berglund, E. Z., and Lindell, M. K. (2018), “An agent-based modeling framework for assessing the public health protection of water advisories”, Water Resources Management, Vol. 32, No. 6, pp. 2033–2059. DOI: 10.1007/s11269-018-1916-6.

24.  Zhou, L., Chen, R., Tang, X., Ke, F., Liu, W., Ren, L., and Zhang, L. (2022), “Research on comprehensive utility evaluation model of the infrastructure ERP system” 7th Asia Conference on Power and Electrical Engineering (ACPEE), 874–879. DOI: 10.1109/ACPEE53904.2022.9783855

25.  Creswell, J. W. (2014), Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.), Sage Publications, Thousand Oaks, CA.

26.  Akter, S. and Wamba, S. F. (2019), “Big data and disaster management: A systematic review and agenda for future research”, Annals of Operations Research, Vol. 283, No. 1–2, pp. 939–959. DOI: 10.1007/s10479-017-2584-2.

27.  Mahendrawathi, E., Hanggara, B. T., and Astuti, H. M. (2019), “Model for BPM implementation assessment: Evidence from companies in Indonesia”, Business Process Management Journal, Vol. 25, No. 5, pp. 825–859. DOI: 10.1108/BPMJ-08-2016-0160.

28.  Tashakkori, A. and Teddlie, C. (2010), SAGE Handbook of Mixed Methods in Social & Behavioral Research, Sage Publications, Inc. DOI: 10.4135/9781506335193

29.  Avanzi, D. S., Foggiatto, A., dos Santos, V. A., Deschamps, F., de Freitas Rocha Loures, E. (2017), “A framework for interoperability assessment in crisis management”, Journal of Industrial Information Integration, Vol. 5, pp. 26–38. DOI: 10.1016/J.JII.2017.02.004.

30.  Lubis, M., Parmita, E., and Winiyanti Lumingkewas, L. (2020), “ERP implementation in crisis management: A case study of government-owned electricity company”, IOP Conference Series: Materials Science and Engineering, Vol. 847, No. 1. DOI: 10.1088/1757-899X/847/1/012081