Сучасні малі мережі для класифікації зображень. Аналіз особливостей
1. Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
2. Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
4. He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
5. Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K. & Ghayvat, H. (2021). CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics, 10(20), 2470. https://doi.org/10.3390/electronics10202470
6. Patel, C. I., Patel, R. & Patel, P. (2011, July). Goal detection from unsupervised video surveillance. In International Conference on Advances in Computing and Information Technology (pp. 76-88). Berlin, Heidelberg: Springer Berlin Heidelberg.
7. Patel, R. & Patel, C. I. (2013). Robust face recognition using distance matrice. International Journal of Computer and Electrical Engineering, 5(4), 401-404.
8. Bosamiya, D. & Fuletra, J. D. (2013). A survey on drivers drowsiness detection techniques. International Journal of Recent Innovations and Trends in Computing and Communication, 1, 816-819.
9. Tan, M. & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 6105-6114). PMLR.
10. Tan, M. & Le, Q. V. (2021). EfficientNetV2: Smaller models and faster training. arXiv preprint arXiv:2104.00298.
11. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
12. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4510-4520).
13. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V. & Le, Q. V. (2019). Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1314-1324).
14. Zhang, X., Zhou, X., Lin, M. & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6848-6856).
15. Ma, N., Zhang, X., Zheng, H. T. & Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Proceedings of the European Conference on Computer Vision (pp. 116-131). Springer.
16. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L. & Hajishirzi, H. (2018). ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. arXiv preprint arXiv:1803.06815.
17. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L. & Hajishirzi, H. (2019). ESPNetv2: A light-weight, power efficient, and general purpose convolutional neural network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9190-9198).
18. Ma, Y., Shao, Y., Wu, X. & Sun, Y. (2020). DiCENet: Dimension-wise convolutions for efficient networks. arXiv preprint arXiv:2002.10902.
19. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv preprint arXiv:1602.07360.
20. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
21. Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (pp. 807-814).
22. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
23. Lin, M., Chen, Q, & Yan, S. (2014). Network in network. arXiv preprint arXiv:1312.4400.
24. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1251-1258).
25. He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385.
26. Ramachandran, P., Zoph, B. & Le, Q. V. (2017). Searching for activation functions. arXiv preprint arXiv:1710.05941.
27. Elfwing, S., Uchibe, E. & Doya, K. (2017). Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. arXiv preprint arXiv:1702.03118.
28. Tan, M., Chen, B., Pang, R., Vasudevan, V. & Le, Q. V. (2019). MnasNet: Platform-aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626.
29. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252.
30. Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2881-2890).
31. He, K., Zhang, X., Ren, S. & Sun, J. (2014). Spatial pyramid pooling in deep convolutional networks for visual recognition. In Proceedings of the European Conference on Computer Vision (pp. 346-361). Springer.
32. Holschneider, M., Kronland-Martinet, R., Morlet, J. & Tchamitchian, P. (1990). A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets (pp. 286–297). Springer.
33. Biloshchytskyi, A., Dikhtiarenko, O. & Paliy, S. (2015). Searching for partial duplicate images in scientific works. Management of Development of Complex Systems, 21, 149 – 155.
1. Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
2. Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
4. He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
5. Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K. & Ghayvat, H. (2021). CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics, 10(20), 2470. https://doi.org/10.3390/electronics10202470
6. Patel, C. I., Patel, R. & Patel, P. (2011, July). Goal detection from unsupervised video surveillance. In International Conference on Advances in Computing and Information Technology (pp. 76-88). Berlin, Heidelberg: Springer Berlin Heidelberg.
7. Patel, R. & Patel, C. I. (2013). Robust face recognition using distance matrice. International Journal of Computer and Electrical Engineering, 5(4), 401-404.
8. Bosamiya, D. & Fuletra, J. D. (2013). A survey on drivers drowsiness detection techniques. International Journal of Recent Innovations and Trends in Computing and Communication, 1, 816-819.
9. Tan, M. & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 6105-6114). PMLR.
10. Tan, M. & Le, Q. V. (2021). EfficientNetV2: Smaller models and faster training. arXiv preprint arXiv:2104.00298.
11. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
12. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4510-4520).
13. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V. & Le, Q. V. (2019). Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1314-1324).
14. Zhang, X., Zhou, X., Lin, M. & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6848-6856).
15. Ma, N., Zhang, X., Zheng, H. T. & Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Proceedings of the European Conference on Computer Vision (pp. 116-131). Springer.
16. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L. & Hajishirzi, H. (2018). ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. arXiv preprint arXiv:1803.06815.
17. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L. & Hajishirzi, H. (2019). ESPNetv2: A light-weight, power efficient, and general purpose convolutional neural network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9190-9198).
18. Ma, Y., Shao, Y., Wu, X. & Sun, Y. (2020). DiCENet: Dimension-wise convolutions for efficient networks. arXiv preprint arXiv:2002.10902.
19. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv preprint arXiv:1602.07360.
20. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
21. Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (pp. 807-814).
22. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
23. Lin, M., Chen, Q, & Yan, S. (2014). Network in network. arXiv preprint arXiv:1312.4400.
24. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1251-1258).
25. He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385.
26. Ramachandran, P., Zoph, B. & Le, Q. V. (2017). Searching for activation functions. arXiv preprint arXiv:1710.05941.
27. Elfwing, S., Uchibe, E. & Doya, K. (2017). Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. arXiv preprint arXiv:1702.03118.
28. Tan, M., Chen, B., Pang, R., Vasudevan, V. & Le, Q. V. (2019). MnasNet: Platform-aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626.
29. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252.
30. Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2881-2890).
31. He, K., Zhang, X., Ren, S. & Sun, J. (2014). Spatial pyramid pooling in deep convolutional networks for visual recognition. In Proceedings of the European Conference on Computer Vision (pp. 346-361). Springer.
32. Holschneider, M., Kronland-Martinet, R., Morlet, J. & Tchamitchian, P. (1990). A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets (pp. 286–297). Springer.
33. Biloshchytskyi, A., Dikhtiarenko, O. & Paliy, S. (2015). Searching for partial duplicate images in scientific works. Management of Development of Complex Systems, 21, 149 – 155.