Оптимізація й адаптація нейромереж на основі наявних архітектур: методи, виклики та перспективи
1. Koreniuk T., Honcharenko, T., Sapaiev, V. Individualization of Learning due to Introduction of Artificial Intelligence into the Education System. 2024 IEEE AITU: Digital Generation, Conference Pro eedings – AITU, 2024, pp. 150–153. URL: DOI: 10.1109/IEEECONF61558.2024.10585595.
2. Matsiievskyi, O., Honcharenko, T., Solovei, O., Liashchenko, T., Achkasov, I., Golenkov, V. Using Artificial Intelligence to Convert Code to Another Programming Language. 2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST) 2024, pp. 379–385. URL: https://ieeexplore.ieee.org/abstract/document/10629305.
3. Gaudenz, Boesch. (2021). Very Deep Convolutional Networks (VGG) Essential Guide. URL: https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
4. Simonyan, Karen, Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Vision and Pattern Recognition. arXiv:1409.1556. URL: https://doi.org/10.48550/arXiv.1409.1556.
5. Geoffrey, E., Hinton, O., Vinyals, J. Dean. (2015). Distilling the Knowledge in a Neural Network. NIPS 2014 Deep Learning Workshop, URL: https://doi.org/10.48550/arXiv.1503.02531.
6. Howard J., Gugger S. Fastai: A Layered API for Deep Learning. Information. 2020. Vol. 11, no. 2. P. 108. URL: https://doi.org/10.3390/info11020108.
7. Kirkpatrick J. et al. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences. 2017. Vol. 114, no. 13. P. 3521–3526. URL: https://doi.org/10.1073/pnas.1611835114.
8. Song Han, Jeff Pool, John Tran, William J. Dally. (2015). Learning both Weights and Connections for Efficient Neural Networks. Published as a conference paper at NIPS 2015. URL: https://doi.org/10.48550/arXiv.1506.02626.
9. Wang Y. et al. (2024). Spectrum-BERT: Pre-training of Deep Bidirectional Transformers for Spectral Classification of Chinese Liquors. IEEE Transactions on Instrumentation and Measurement. 2024. P. 1. URL: https://doi.org/10.1109/tim.2024.3374300.
10. Geoffrey, Hinton, Oriol, Vinyals, Jeff, Dean. (2015). Distilling the Knowledge in a Neural Network. NIPS 2014 Deep Learning Workshop. URL: https://doi.org/10.48550/arXiv.1503.02531.
11. Barret Zoph, Quoc V. Le, (2016). Neural Architecture Search with Reinforcement Learning. Machine Learning (cs.LG). URL: https://doi.org/10.48550/arXiv.1611.01578.
12. Cassimon A., Mercelis S., Mets K. Scalable reinforcement learning-based neural architecture search. Neural Computing and Applications. 2024. URL: https://doi.org/10.1007/s00521-024-10445-2.
13. Hanxiao, Liu, Karen, Simonyan, Yiming, Yang. (2018). Differentiable Architecture Search. Published at ICLR 2019. URL: https://doi.org/10.48550/arXiv.1806.09055.
14. Jbara W. A., Soud J. H. (2024) DeepFake Detection Based VGG-16 Model. 2024 2nd International Conference on Cyber Resilience (ICCR), Dubai, United Arab Emirates, 26–28 February 2024. URL: https://doi.org/10.1109/iccr61006.2024.10533024.
15. Qian Y. et al. Very Deep Convolutional Neural Networks for Noise Robust Speech Recognition. IEEE / ACM Transactions on Audio, Speech, and Language Processing. 2016. Vol. 24, no. 12. P. 2263–2276. URL: https://doi.org/10.1109/taslp.2016.2602884.
16. Nikbakhtsarvestani, F., Ebrahimi, M., Rahnamayan, S. Multi-objective ADAM Optimizer (MAdam). 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, Oahu, HI, USA, 1–4 October 2023. 2023. URL: https://doi.org/10.1109/smc53992.2023.10394533.
17. Pateriya, P. N. et al. Deep Residual Networks for Image Recognition. International Journal of Innovative Research in Computer and Communication Engineering. 2023. Vol. 11, no. 09. P. 10742–10747. URL: https://doi.org/10.15680/ijircce.2023.1109026.
18. Krizhevsky Alex, Sutskever Ilya and E. Hinton Geoffrey. (2012). ImageNet Classification with Deep Convolutional Neural Networks", NIPS, pp. 1106–1114.
19. Xiaoling Xia, Cui Xu, and Bing Nan, (2017). Inception-v3 for flower classification. 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, 2017, pp. 783–787. URL: doi: 10.1109/ICIVC.2017.7984661.
1. Koreniuk T., Honcharenko, T., Sapaiev, V. (2024). Individualization of Learning due to Introduction of Artificial Intelligence into the Education System. 2024 IEEE AITU: Digital Generation, Conference Pro eedings – AITU 2024, pp. 150–153. URL: DOI: 10.1109/IEEECONF61558.2024.10585595.
2. Matsiievskyi, O., Honcharenko, T., Solovei, O., Liashchenko, T., Achkasov, I., Golenkov, V. (2024). Using Artificial Intelligence to Convert Code to Another Programming Language. 2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST), pp. 379–385. URL: https://ieeexplore.ieee.org/abstract/document/10629305.
3. Gaudenz, Boesch. (2021). Very Deep Convolutional Networks (VGG) Essential Guide. URL: https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
4. Simonyan, Karen, Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Vision and Pattern Recognition. arXiv:1409.1556. URL: https://doi.org/10.48550/arXiv.1409.1556.
5. Geoffrey, E., Hinton, O., Vinyals, J. Dean. (2015). Distilling the Knowledge in a Neural Network. NIPS 2014 Deep Learning Workshop. URL: https://doi.org/10.48550/arXiv.1503.02531.
6. Howard, J., Gugger, S. Fastai: A Layered API for Deep Learning. Information. 2020. Vol. 11, no. 2. P. 108. URL: https://doi.org/10.3390/info11020108.
7. Kirkpatrick, J., et al. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences. Vol. 114, no. 13. P. 3521–3526. URL: https://doi.org/10.1073/pnas.1611835114.
8. Song, Han, Jeff, Pool, John, Tran, William, J. Dally. (2015). Learning both Weights and Connections for Efficient Neural Networks. Published as a conference paper at NIPS 2015. URL: https://doi.org/10.48550/arXiv.1506.02626.
9. Wang Y., et al. (2024). Spectrum-BERT: Pre-training of Deep Bidirectional Transformers for Spectral Classification of Chinese Liquors. IEEE Transactions on Instrumentation and Measurement. 2024. P. 1. URL: https://doi.org/10.1109/tim.2024.3374300.
10. Geoffrey, Hinton, Oriol, Vinyals, Jeff, Dean. (2015). Distilling the Knowledge in a Neural Network. NIPS 2014 Deep Learning Workshop. URL: https://doi.org/10.48550/arXiv.1503.02531.
11. Barret Zoph, Quoc V. Le (2016). Neural Architecture Search with Reinforcement Learning. Machine Learning (cs.LG). URL: https://doi.org/10.48550/arXiv.1611.01578.
12. Cassimon, A., Mercelis, S., Mets, K. (2024). Scalable reinforcement learning-based neural architecture search. Neural Computing and Applications. URL: https://doi.org/10.1007/s00521-024-10445-2.
13. Hanxiao Liu, Karen Simonyan, Yiming Yang. (2018). Differentiable Architecture Search. Published at ICLR 2019. URL: https://doi.org/10.48550/arXiv.1806.09055
14. Jbara, W. A., Soud, J. H. (2024). DeepFake Detection Based VGG-16 Model. 2024 2nd International Conference on Cyber Resilience (ICCR), Dubai, United Arab Emirates, 26–28 February 2024. URL: https://doi.org/10.1109/iccr61006.2024.10533024.
15. Qian Y. et al. (2016). Very Deep Convolutional Neural Networks for Noise Robust Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2016. Vol. 24, no. 12. P. 2263–2276. URL: https://doi.org/10.1109/taslp.2016.2602884.
16. Nikbakhtsarvestani F., Ebrahimi M., Rahnamayan S. Multi-objective ADAM Optimizer (MAdam). 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, Oahu, HI, USA, 1–4 October 2023. 2023. URL: https://doi.org/10.1109/smc53992.2023.10394533
17. Pateriya P. N. et al. (2023). Deep Residual Networks for Image Recognition. International Journal of Innovative Research in Computer and Communication Engineering. Vol. 11, no. 09. P. 10742–10747. URL: https://doi.org/10.15680/ijircce.2023.1109026
18. Krizhevsky, Alex, Sutskever, Ilya, and E., Hinton, Geoffrey. (2012). ImageNet Classification with Deep Convolutional Neural Networks", NIPS, pp. 1106–1114.
19. Xiaoling Xia, Cui Xu and Bing Nan. (2017). Inception-v3 for flower classification. 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, 2017, pp. 783–787. URL: doi: 10.1109/ICIVC.2017.7984661.