Моделі і методи штучного інтелекту в процесі виконання будівельно-технічної експертизи
1. Zinchenko O. V., Zvenihorodskyy O. S., Kysil T. M. Convolutional neural networks for solving computer vision problems. Telecommunication and Information Technologies. 2022. 2, 4–12. https://doi.org/10.31673/2412-4338.2022.020411.
2. Su J., Zhang Z., Liu L. Median pixel difference convolutional network for robust face recognition. British Machine Vision Conference. 2022. 1–14. https://doi.org/10.48550/arXiv.2205.15867.
3. Lakshmi N., Arakeri M. P. Face recognition under illumination based on optimized neural network. International Journal of Advanced Computer Science and Applications (IJACSA). 2022. 13 (9), 131–137. https://doi.org/10.14569/ijacsa.2022.0130915. 4. Yildirim I., Belledonne M., Freiwald W. A., Tenenbaum J. B. Efficient inverse graphics in biological face processing. Science Advances. 2020. 6 (10), 1–18. https://doi.org/10.1126/sciadv.aax5979.
4. Sarkar S. D., Ajitha Shenoy K. B. Face recognition using artificial neural network and feature extraction. 2020 7th International Conference on SPIN. 2020. 417–422. https://doi.org/10.1109/SPIN48934.2020.9071378.
5. Ke C., Ai-min D., Xiao-Hua L., Li-peng Z., Ling W., Xue-mei S. Difference of gaussians (DOG) model. PLOS ONE. 2015. 1. https://doi.org/10.1371/JOURNAL.PONE.0144403.G001.
6. Zhuowen L., Kejun W., Guofeng Z., Lei Y. Illumination compensation method for face image based on improved gamma correction. Proceedings of the 32nd Chinese Control Conference. 2013. 3733–3737. 8. Chang Y., Jung C., Ke P., Song H., Hwang J. Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access. 2018. 6, 11782–11792. https://doi.org/10.1109/ACCESS.2018.2797872.
7. O’Shea K., Nash R. An introduction to convolutional neural networks. ArXiv. 2015. abs/1511.08458, 1–11.
8. Гончаренко Т.А. Застосування BIM-технології для створення інформаційної моделі території під забудову. Управління розвитком складних систем. 2018. 33, 138–145.
9. Chernyshev D., Dolhopolov S., Honcharenko T., Haman H., Ivanova T., Zinchenko M. Integration of building information modeling and artificial intelligence systems to create a digital twin of the construction site. 2022 IEEE International Conference on Computer Sciences and Information Technologies (CSIT). 2022. 36–39. https://doi.org/10.1109/CSIT56902.2022.10000717.
10. Mihaylenko V., Honcharenko T., Chupryna K., Andrashko Yu. Modeling of Spatial Data on the Construction Site Based on Multidimensional Information Objects. International Journal of Engineering and Advanced Technology (IJEAT). 2019. 8 (6), 3934–3940.
11. Terentyev O., Tsiutsiura S., Honcharenko T., Lyashchenko T. Multidimensional Space Structure for Adaptable. International Journal of Recent Technology and Engineering. 2019. 8 (3), 7753–7758.
12. Berezutskyi I., Honcharenko T., Ryzhakova G., Tykhonova O., Pokolenko V., Sachenko I. Methodological Approach for Choosing Type of IT Projects. Management. 2024 IEEE 4th International Conference on Smart Information Systems and Technologies. 2024. 14–19. https://doi.org/10.1109/SIST61555.2024.10629587.
13. Ryzhakova G., Honcharenko T., Predun K., Petrukha N., Malykhina O., Khomenko O. Using of Fuzzy Logic for Risk Assessment of Construction Enterprise Management System. 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST). 2023. 208–213. https://doi.org/10.1109/SIST58284.2023.10223560.
14. Гончаренко Т.А. Кластерний метод формування метаданих багатовимірних інформаційних систем для розв’язання задач генерального планування. Управління розвитком складних систем. 2020. 42, 93–101. https://doi.org/10.32347/2412-9933.2020.42.93-101.
15. Cambridge University. The ORL face database. n.d. https://cam-orl.co.uk/facedatabase.html.
16. Chernyshev D., Dolhopolov S., Honcharenko T., Haman H., Ivanova T., Zinchenko M. Integration of Building Information Modeling and Artificial Intelligence Systems to Create a Digital Twin of the Construction Site. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). 2022. 36–39. https://doi.org/10.1109/CSIT56902.2022.10000717.
1. Zinchenko, O. V., Zvenihorodskyy, O. S., & Kysil, T. M. (2022). Convolutional neural networks for solving computer vision problems. Telecommunication and Information Technologies, 2, 4–12. https://doi.org/10.31673/2412-4338.2022.020411.
2. Su, J., Zhang, Z., & Liu, L. (2022). Median pixel difference convolutional network for robust face recognition. British Machine Vision Conference, 1–14. https://doi.org/10.48550/arXiv.2205.15867.
3. Lakshmi, N., & Arakeri, M. P. (2022). Face recognition under illumination based on optimized neural network. International Journal of Advanced Computer Science and Applications (IJACSA), 13 (9), 131–137. https://doi.org/10.14569/ijacsa.2022.0130915.
4. Yildirim, I., Belledonne, M., Freiwald, W. A., & Tenenbaum, J. B. (2020). Efficient inverse graphics in biological face processing. Science Advances, 6 (10), 1–18. https://doi.org/10.1126/sciadv.aax5979.
5. Sarkar, S. D., & Ajitha Shenoy, K. B. (2020). Face recognition using artificial neural network and feature extraction. In 2020 7th International Conference on SPIN (pp. 417–422). https://doi.org/10.1109/SPIN48934.2020.9071378.
6. Ke, C., Ai-min, D., Xiao-Hua, L., Li-peng, Z., Ling, W., & Xue-mei, S. (2015). Difference of gaussians (DOG) model. PLOS ONE, 1. https://doi.org/10.1371/JOURNAL.PONE.0144403.G001.
7. Zhuowen, L., Kejun, W., Guofeng, Z., & Lei, Y. (2013). Illumination compensation method for face image based on improved gamma correction. In Proceedings of the 32nd Chinese Control Conference (pp. 3733–3737).
8. Chang, Y., Jung, C., Ke, P., Song, H., & Hwang, J. (2018). Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access, 6, 11782–11792. https://doi.org/10.1109/ACCESS.2018.2797872.
9. O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. ArXiv. https://arxiv.org/abs/1511.08458.
10. Honcharenko, T. A. (2018). Application of BIM-technology for creating an information model of the territory for development. Management of Complex Systems Development, 33, 138–145.
11. Chernyshev, D., Dolhopolov, S., Honcharenko, T., Haman, H., Ivanova, T., & Zinchenko, M. (2022). Integration of building information modeling and artificial intelligence systems to create a digital twin of the construction site. In 2022 IEEE International Conference on Computer Sciences and Information Technologies (CSIT) (pp. 36–39). https://doi.org/10.1109/CSIT56902.2022.10000717.
12. Mihaylenko, V., Honcharenko, T., Chupryna, K., & Andrashko, Y. (2019). Modeling of spatial data on the construction site based on multidimensional information objects. International Journal of Engineering and Advanced Technology (IJEAT),
8 (6), 3934–3940.
13. Terentyev, O., Tsiutsiura, S., Honcharenko, T., & Lyashchenko, T. (2019). Multidimensional space structure for adaptable. International Journal of Recent Technology and Engineering, 8 (3), 7753–7758.
14. Berezutskyi, I., Honcharenko, T., Ryzhakova, G., Tykhonova, O., Pokolenko, V., & Sachenko, I. (2024). Methodological approach for choosing type of IT projects. Management. In 2024 IEEE 4th International Conference on Smart Information Systems and Technologies (pp. 14–19). https://doi.org/10.1109/SIST61555.2024.10629587.
15. Ryzhakova, G., Honcharenko, T., Predun, K., Petrukha, N., Malykhina, O., & Khomenko, O. (2023). Using of fuzzy logic for risk assessment of construction enterprise management system. In 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST) (pp. 208–213). https://doi.org/10.1109/SIST58284.2023.10223560.
16. Honcharenko, T. A. (2020). Cluster method for forming metadata of multidimensional information systems for solving general planning problems. Management of Complex Systems Development, 42, 93–101. https://doi.org/10.32347/2412-9933.2020.42.93-101.
17. Cambridge University. (n.d.). The ORL face database. https://cam-orl.co.uk/facedatabase.html.
18. Chernyshev, D., Dolhopolov, S., Honcharenko, T., Haman, H., Ivanova, T., & Zinchenko, M. (2022). Integration of building information modeling and artificial intelligence systems to create a digital twin of the construction site. In 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT) (pp. 36–39). https://doi.org/10.1109/CSIT56902.2022.10000717.