Застосування нейронних мереж для підтримки прийняття управлінських рішень у складних ІТ-проєктах
1. Духнов Ю. Гібридні підходи до обробки сенсорних даних з мобільних пристроїв: класичні алгоритми та машинне навчання. Débats scientifiques et orientations prospectives du développement scientifique : матеріали конференції / голова І. Мич. 2025. URL: https://doi.org/10.36074/logos-04.04.2025.043.
2. Penia O., Sulema Y. Застосування глибоких штучних нейронних мереж для класифікації мультимодальних даних. System technologies. 2024. Т. 6, № 149. С. 11–22. URL: https://doi.org/10.34185/1562-9945-6-149-2023-02.
3. Осталецький В. Б. Нейромережеве моделювання процесів управління проектами в умовах ризику на засадах оцінки параметрів ефективності виконання проекту. Вісник Київського національного університету технологій та дизайну. Серія «Економічні науки». 2016. № 2 (97). С. 109–115.
4. Taherdoost H. Deep Learning and Neural Networks: Decision-Making Implications. Symmetry. 2023. Vol. 15, no. 9. P. 1723. URL: https://doi.org/10.3390/sym15091723.
5. Financial Asset Management Using Artificial Neural Networks / R. Y. Sinaki et al. Research Anthology on Artificial Neural Network Applications. 2022. P. 1359–1380. URL: https://doi.org/10.4018/978-1-6684-2408-7.ch066.
6. Hud O., Kunanets N. The Feasibility of Using Recurrent Neural Networks as a Tool for Improving the Scrum Sprint Planning Process. Vìsnik Nacìonalʹnogo unìversitetu "Lʹvìvsʹka polìtehnìka". Serìâ Ìnformacìjnì sistemi ta merežì. 2024. Vol. 16. P. 203–219. URL: https://doi.org/10.23939/sisn2024.16.203.
7. Li J. AI-Driven Property Management Decision Support System Using LSTM Networks for Energy Optimization. Informatica. 2025. Vol. 49, no. 10. URL: https://doi.org/10.31449/inf.v49i10.6964.
8. Yadav H., Thakkar A. NOA-LSTM: An efficient LSTM cell architecture for time series forecasting. Expert Systems with Applications. 2024. Vol. 238. P. 122333. URL: https://doi.org/10.1016/j.eswa.2023.122333.
9. Nariman G. S., Majeed H. D. Adaptive Filter based on Absolute Average Error Adaptive Algorithm for Modeling System. UHD Journal of Science and Technology. 2022. Vol. 6, no. 1. P. 60–69. URL: https://doi.org/10.21928/uhdjst.v6n1y2022.pp60-69.
10. Mayer M. J., Yang D. Potential root mean square error skill score. Journal of Renewable and Sustainable Energy. 2024. Vol. 16, no. 1. URL: https://doi.org/10.1063/5.0187044.
11. Liang J. Network Security Based on Improved Genetic Algorithm and Weighted Error Back-Propagation Algorithm. International Journal of Advanced Computer Science and Applications. 2024. Vol. 15, no. 11. URL: https://doi.org/10.14569/ijacsa.2024.0151121.
12. Deng A. Time series cross validation: A theoretical result and finite sample performance. Economics Letters. 2023. P. 111369. URL: https://doi.org/10.1016/j.econlet.2023.111369.
1. Dukhnov, Y. (2025). Hybrid approaches to processing sensor data from mobile devices: Classical algorithms and machine learning. In I. Mych (Chair), Débats Scientifiques et Orientations Prospectives du Développement Scientifique. European Scientific Platform. URL: https://doi.org/10.36074/logos-04.04.2025.043.
2. Penia, O., & Sulema, Y. (2024). Application of deep artificial neural networks for multimodal data classification. System Technologies, 6 (149), 11–22. URL: https://doi.org/10.34185/1562-9945-6-149-2023-02.
3. Ostaletskyi, V. B. (2016). Neural network modeling of project management processes under risk conditions based on the evaluation of project performance efficiency parameters. Bulletin of Kyiv National University of Technologies and Design. Series: Economic Sciences, (2/97), 109–115.
4. Taherdoost, H. (2023). Deep learning and neural networks: Decision-making implications. Symmetry, 15 (9), 1723. URL: https://doi.org/10.3390/sym15091723.
5. Sinaki, R. Y., Sadeghi, A., Lynch, D. S., Young II, W. A., & Weckman, G. R. (2022). Financial asset management using artificial neural networks. In Research Anthology on Artificial Neural Network Applications (pp. 1359–1380). IGI Global. URL: https://doi.org/10.4018/978-1-6684-2408-7.ch066.
6. Hud, O., & Kunanets, N. (2024). The feasibility of using reccurent neural networks as a tool for improving the Scrum sprint planning process. Visnyk Natsionalnoho Universytetu "Lvivska Politekhnika". Seriia Informatsiini Systemy ta Merezhi, 16, 203–219. URL: https://doi.org/10.23939/sisn2024.16.203.
7. Li, J. (2025). AI-driven property management decision support system using LSTM networks for energy optimization. Informatica, 49 (10). URL: https://doi.org/10.31449/inf.v49i10.6964.
8. Yadav, H., & Thakkar, A. (2024). NOA-LSTM: An efficient LSTM cell architecture for time series forecasting. Expert Systems with Applications, 238, 122333. URL: https://doi.org/10.1016/j.eswa.2023.122333.
9. Nariman, G. S., & Majeed, H. D. (2022). Adaptive filter based on absolute average error adaptive algorithm for modeling system. UHD Journal of Science and Technology, 6 (1), 60–69. URL: https://doi.org/10.21928/uhdjst.v6n1y2022.pp60-69.
10. Mayer, M. J., & Yang, D. (2024). Potential root mean square error skill score. Journal of Renewable and Sustainable Energy, 16 (1). URL: https://doi.org/10.1063/5.0187044.
11. Liang, J. (2024). Network security based on improved genetic algorithm and weighted error back-propagation algorithm. International Journal of Advanced Computer Science and Applications, 15 (11). URL: https://doi.org/10.14569/ijacsa.2024.0151121.
12. Deng, A. (2023). Time series cross validation: A theoretical result and finite sample performance. Economics Letters, 111369. URL: https://doi.org/10.1016/j.econlet.2023.111369.