СКЛАДОВІ АНАЛІЗУ НАУКОВИХ МЕРЕЖ
Заголовок (англійською):
COMPONENTS OF SCIENTIFIC NETWORK ANALYSIS
Автор(и):
Кучанський О.Ю.
Автор(и) (англ):
Kuchansky Alexander
Ключові слова (укр):
аналіз наукових мереж; мережа наукової співпраці; мережа цитування; наукометрія; науковий простір
Ключові слова (англ):
scientific network analysis; scientific collaboration network; citation network; scientometrics; scientific space
Анотація (укр):
Дослідження наукових просторів є складною задачею, яка має враховувати динаміку розвитку їх компонентів, а також враховувати численні зміни, які виникають внаслідок зростання швидкості продукування наукової інформації та її поширення. Аналіз об'єднань суб’єктів та об’єктів наукового простору, зокрема мереж наукової співпраці, мереж цитування та спільного цитування, є актуальною задачею дослідження, оскільки є в основі коректного оцінювання показників науково-дослідної діяльності загалом. В роботі наведено огляд задач, які виникають в межах аналізу наукових мереж: дослідження мереж наукової співпраці, дослідження мереж цитування, спільного цитування та бібліографічних з’єднань, ідентифікація напрямів наукових досліджень та аналіз тематик, побудова наукових мереж на основі спільних ключових слів, дослідження гетерогенних наукових мереж тощо. Глобальність поширення та динаміка розвитку наукових мереж визначає підходи до їх аналізу. Дослідження наукових мереж дає змогу зрозуміти структуру взаємодії суб’єктів та об’єктів наукових мереж (науковців, закладів вищої освіти та їх структурних підрозділів), а також провести ґрунтовне оцінювання їх науково-дослідної діяльності. Також наведено візуалізацію мережі наукової співпраці, що утворилась в межах виконання чотирьох бюджетних науково-дослідних робіт і одного проєкту програми Erasmus+KA2 за період з 2015 по 2020 роки. Візуалізація виконана з використанням силового алгоритму Фрухтермана – Рейнгольда. Також на основі алгоритму візуалізації Yifan Hu зображена мережа цитування публікацій науковців за цими ж проєктами. Результати оцінювання можуть бути використані як власне науковцями та освітніми установами для моніторингу динаміки науково-дослідної діяльності, так і державними органами, зокрема Міністерством освіти і науки України, а також органами місцевого самоврядування для фінансового стимулювання певних напрямів наукових досліджень, які мають позитивну динаміку та перспективи розвитку.
Анотація (англ):
Scientific spaces research is a complex task that must take into account the dynamics of the development of their components, as well as account for the numerous changes that result from the increase in the speed of information production and its dissemination. The analysis of the associations of subjects and objects of the scientific space, including networks of scientific cooperation, citation networks and joint citation, is an urgent task of the research since it is the basis for the correct evaluation of their R&D indicators. The paper gives an overview of the problems arising in the analysis of scientific networks: research of scientific cooperation networks, research of citation networks, joint citation and bibliographic connections, identification of directions of scientific research and analysis of topics, construction of scientific networks based on common keywords, research of heterogeneous scientific networks. The globalization of the dissemination and the dynamics of the scientific network's development determine the approaches to their analysis. Study of scientific networks allows to understand the structure of interaction of subjects and objects of scientific networks (scientists, HEI and their structural divisions), as well as to conduct a thorough evaluation of their research activities. The paper presents a visualization of the scientific cooperation network within the framework of the implementation of four budget research topics and one Erasmus + KA2 project for the period from 2015 to 2020. The visualization performed using the power algorithm of the Fruchterman-Rheingold viewing. The citation network of scientists's publications based on the Yifan Hu visualization algorithm was presented. The results of the evaluation can be used both by scientists and educational institutions to monitor the dynamics of research activities. In particular, the Ministry of Education and Science of Ukraine, as well as by local self-government bodies, to financially stimulate specific areas of research that have positive dynamics and development prospects.
Публікатор:
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр):
Управління розвитком складних систем, номер 41, 2020
Назва журналу, номер, рік випуску (рус):
Управление развитием сложных систем, номер 41, 2020
Назва журналу, номер, рік випуску (англ):
Management of Development of Complex Systems, Number 41, 2020
Мова статті:
Українська
Формат документа:
application/pdf
Документ:
Дата публікації:
28 Январь 2020
Номер збірника:
Розділ:
ІНФОРМАТИЗАЦІЯ ВИЩОЇ ОСВІТИ
Університет автора:
Київський національний університет імені Тараса Шевченка, Київ
Литература:
- Кремень В.Г., Биков В.Ю. Категорії «простір» і «середовище»: особливості модельного подання та освітнього застосування. Теорія і практика управління соціальними системами. 2013. № 2. С. 3–16.
- Gipp B., Beel J. Citation Proximity Analysis (CPA) – A New Approach for Identifying Related Work Based on Co-Citation Analysis. Proceedings of the 12th International Conference on Scientometrics and Informetrics (ISSI’09), Rio de Janeiro, Brazil. 2009. C. 571 – 575.
- Biloshchytskyi A., Kuchansky A., Andrashko Yu., Biloshchytska S., Kuzka O., Terentyev O. Evaluation methods of the results of scientific research activity of scientists based on the analysis of publication citations. Eastern-European Journal of Enterprise Technologies. 2017. 3(2 (87)). P. 4 – 10. doi: 10.15587/1729-4061.2017.103651
- Kuchansky A., Andrashko Yu., Biloshchytskyi A., Danchenko O., Ilarionov O., Vatskel I., Honcharenko T. The method for evaluation of educational environment subjects' performance based on the calculation of volumes of M-simplexes. Eastern-European Journal of Enterprise Technologies. 2018. 2(4(92)). P. 15 – 25. doi: 10.15587/1729-4061.2018.126287
- Lizunov P., Biloshchytskyi A., Kuchansky A., Andrashko Yu., Biloshchytska S. Improvement of the method for scientific publications clustering based on n-gram analysis and fuzzy method for selecting research partners. Eastern-European Journal of Enterprise Technologies. 4(4(100)). 2019. P. 6–14. doi: https://doi.org/10.15587/1729-4061.2019.175139
- Biloshchytskyi A., Myronov O., Reznik R., Kuchansky A., Andrashko Yu., Paliy S., et al. A method to evaluate the scientific activity quality of HEIs based on a scientometric subjects presentation model. Eastern-European Journal of Enterprise Technologies. 2017. Vol. 6, Issue 2 (90). – P. 16–2 2. doi: 10.15587/1729-4061.2017.118377
- Biloshchytskyi A., Kuchansky A., Andrashko Yu., Biloshchytska S., Dubnytska A., Vatskel V. The Method of the Scientific Directions Potential Forecasting in Infocommunication Systems of an Assessment of the Research Activity Results. 2017 IEEE International Conference «Problems of Infocommunications. Science and Technology» (PIC S&T). 2017. P. 69–72. doi: 10.1109/INFOCOMMST.2017.8246352
- Білощицький А.О., Кучанський О.Ю., Андрашко Ю.В., Білощицька С.В., Кузка О.І. Концептуальна модель інформаційної технології оцінювання результатів науково-дослідної роботи. Управління розвитком складних систем. 2017. № 30. C. 163 – 168.
- Biloshchytskyi A., Kuchansky А., Andrashko Yu., Paliy S., Biloshchytska S., Bronin S., et al. Development of technical component of the methodology for project-vector management of educational environment. Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2/2 (92). P 4–13. doi: 10.15587/1729-4061.2018.126301
- Moed H., Glanzel W., Schmoch U. Handbook of Quantitative Science and Technology Research. Springer Netherlands. 2004. 800 p. ISBN 978-1-4020-2755-0.
- Ying Ding. Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics. 2011. 5 (1). C. 187 – 203. doi: 10.1016/j.joi.2010.10.008
- Hou H., Kretschmer H., Liu Z. The Structure of Scientific Collaboration Networks in Scientometrics. Scientometrics. 2008. 75. C. 189 – 202.
- Barabási A.-L. The New Science of Networks. Perseus Books Group. 2002, 288 p.
- Kobourov S.G. Spring Embedders and Force-Directed Graph Drawing Algorithms. Biocode. 2012. URL: https://arxiv.org/abs/1201.3011
- Long J.C., Cunningham F.C., Carswell P., Braithwaite J. Who are the key players in a new translational research network? BMC Health Serv Res. 2013. 13:338. doi: 10.1186/1472-6963-13-338
- Øystein O. Theory of graphs. Colloquium Publications, American Mathematical Society. 1967. 104 p.
- Bavelas A. Communication patterns in task-oriented groups. Journal of the Acoustical Society of America. 1950. 22. C. 725 – 730.
- Marchiori M., Latora V. Harmony in the small-world. Physica A: Statistical Mechanics and its Applications. 2000. 285 (3 – 4). P. 539 – 546. doi: 10.1016/s0378-4371(00)00311-3
- Newman M.E. Networks: An Introduction. Published to Oxford Scholarship. 2010. 784 p. doi: 10.1093/acprof:oso/9780199206650.003.0006
- Brandes U., Delling D., Gaertler M., Gorke R., Hoefer M., Nikoloski Z., Wagner, D. On Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering. 20(2). 2008. P. 172–188. doi: 10.1109/TKDE.2007.190689.
- Watts D.J., Strogatz S. Collective dynamics of 'small-world' networks. Nature. 393. 1998. – P. 440 – 442.
- Kemper A. Valuation of Network Effects in Software Markets: A Complex Networks Approach (Contributions to Management Science) 2010 Edition, Kindle Edition. 2010. – 330 p.
- Egghe L., Rousseau R. Introduction to Infometrics. Amsterdam: Elsevier. 1990. – 450 p.
- Manning C.D., Raghavan P., Schütze H. Introduction to Information Retrieval. Cambridge University Press. Retrieved 2008. – 506 p.
- Leskovec J., Rajaraman A., Ullman J.D. Mining of Massive Datasets 2nd Edition, Kindle Edition. – 2014. – 480 p.
- Yudhoatmojo S.B., Samuar M.A. Community detection on citation network of dblp data sample set using linkrank algorithm. Procedia Computer Science. 2017. 124. – P. 29 – 37.
- Hu Y. Efficient and high quality forcedirected graph drawing. Mathematica Journal. 2005. 10. – P. 37 – 71.
- Small H. "Co-citation in the scientific literature: a new measure of the relationship between two documents. Journal of the American Society for Information Science, 1973, 24, 265 – 269.
- Garfield E. From Bibliographic Coupling to Co-CitationAnalysis Via Algorithmic Historio-Bibliography. A citationist’s tribute to Belver C. Griffith, Presented at Drexel University, Philadelphia, PA. 2001. URL: https://garfield.library.upenn.edu/papers/drexelbelvergriffith92001.pdf
- Porter A.L., Rafols I. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics. 2009. 81(3). – P. 719 – 745.
- National Academies of Sciences Engineering Medicine. Facilitating Interdisciplinary Research. URL: https://www.nap.edu/catalog/11153/facilitating-interdisciplinary-research
- Bhattacharya S., Basu P. Mapping a research area as the micro level using co-word analysis. Scientometrics.1998. 43(3). – P. 359 – 372. doi:10.1007/BF02457404
- Glänzel W. Bibliometric methods for detecting and analysing emerging research topics. El profesional de la informacion. 2012. 21(2). – P. 194 – 201.
- Mulesa O., Geche F., Batyuk A. Information technology for determining structure of social group based on fuzzy c-means. Proceedings of the International Conference on Computer Sciences and Information Technologies (CSIT). 2015. – P. 60 – 62. doi: 10.1109/STC-CSIT.2015.7325431
- Shvets A., Devyatkin D., Sochenkov I., Tikhomirov I., Popov K., Yarygin K. Detection of current research directions based on full-text clustering. Proceedings of the Science and Information Conference (SAI). 2015. – P. 152 – 156. doi: 10.1109/SAI.2015.7237186
- Samatova N., Hendrix W., Jenkins J., Padmanabhan K., Chakraborty A. Practical Graph Mining with R Chapman and Hall/CRC. – 2013. – 495 p.
- Blondel V., Guillaume J., Lambriotte R., Lefebvre E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. 2008, P10008. doi:10.1088/1742-5468/2008/10/P10008
- Seifi M., Guillaume J. Community codes in evolving networks. 2012 International World Wide Web Conference (WWW). 2012. – P. 1173 – 1180. doi:10.1145/2187980.2188258
- Ovelgönne M., Geyer-Schulz A. An ensemble learning strategy for graph clustering. Contemporary Mathematics. 2013. – 588. P. 187–205. doi:10.1090/conm/588/11701
- Zhang T., Ramakrishnan R., Livny M. BIRCH: an efficient data clustering method for very large databases. Proceedings of the 1996 ACM SIGMOD international conference on Management of data. 1996. 25(2). – P. 103–114. doi:10.1145/233269.233324
- Otradskaya T., Gogunskii V. Development process models for evaluation of performance of the educational establishments. Eastern-European Journal of Enterprise Technologies. – 2016. – 3(81). P. 12 – 21.
- Otradskaya T., Gogunskii V., Antoschuk S., Kolesnikov O. Development of parametric model of prediction and evaluation of the quality level of educational institutions. Eastern-European Journal of Enterprise Technologies. – 2016. – 5(3(83)).
– P. 12 – 21. doi:10.15587/1729-4061.2016.80790 - Blei D.M., Ng A.Y., Jordan M.I. Latent Dirichlet Allocation. Journal of Machine Learning Research, 2003, 3, 993 – 1022.
- Pawar R.S., Sobhgol S., Durand G.C., Pinnecke M., Broneske D., Saake G. Codd’s World: Topics and their Evolution in the Database Community Publication Graph. Grundlagen von Datenbanken. 2018. – P. 74 – 81.
- Coccia M. General properties of the evolution of research fields: a scientometric study of human microbiome evolutionary robotics and astrobiology. Scientometrics. 2018. 117(2). – P. 1265 – 1283. doi: 10.1007/s11192-018-2902-8
- Higham K. W., Governale M., Jaffe B., Zulicke U. Unraveling the dynamics of growth, aging and inflation for citations to scientific articles from specific research fields. Journal of Informetrics. 2017. 11. – P. 1190 – 1200.
References:
- Kremen V., Bykov, V. (2013). Space and environment categories: Features of model presentation and educational use. The theory and practice of social systems management, 2, 3 – 16. [In Ukrainian]
- Gipp, B. & Beel, J. (2009). Citation Proximity Analysis (CPA) – A New Approach for Identifying Related Work Based on Co-Citation Analysis. Proceedings of the 12th International Conference on Scientometrics and Informetrics (ISSI’09), Rio de Janeiro, Brazil, 571 – 575.
- Biloshchytskyi, A., Kuchansky, A., Andrashko, Yu., Biloshchytska, S., Kuzka, O. & Terentyev, O. (2017). Evaluation methods of the results of scientific research activity of scientists based on the analysis of publication citations. Eastern-European Journal of Enterprise Technologies, 3(2 (87)), 4–10. doi: 10.15587/1729-4061.2017.103651
- Kuchansky, A., Andrashko, Yu., Biloshchytskyi, A., Danchenko, O., Ilarionov, O., Vatskel, I. & Honcharenko, T. (2018). The method for evaluation of educational environment subjects' performance based on the calculation of volumes of M-simplexes. Eastern-European Journal of Enterprise Technologies, 2(4(92)), 15– 5. doi: 10.15587/1729-4061.2018.126287
- Lizunov, P., Biloshchytskyi, A., Kuchansky, A., Andrashko, Yu. & Biloshchytska, S. (2019). Improvement of the method for scientific publications clustering based on n-gram analysis and fuzzy method for selecting research partners. Eastern-European Journal of Enterprise Technologies. 4(4(100)), 6–14. doi: https://doi.org/10.15587/1729-4061.2019.175139
- Biloshchytskyi, A., Myronov, O., Reznik, R., Kuchansky, A., Andrashko, Yu., Paliy, S., et al. (2017). A method to evaluate the scientific activity quality of HEIs based on a scientometric subjects presentation model. Eastern-European Journal of Enterprise Technologies, 6, 2 (90), 16–22. doi: 10.15587/1729-4061.2017.118377
- Biloshchytskyi, A., Kuchansky, A., Andrashko, Yu., Biloshchytska, S., Dubnytska, A., Vatskel, V. (2017). The Method of the Scientific Directions Potential Forecasting in Infocommunication Systems of an Assessment of the Research Activity Results. 2017 IEEE International Conference «Problems of Infocommunications. Science and Technology» (PIC S&T), 69–72. doi: 10.1109/INFOCOMMST.2017.8246352
- Biloshchytskyi, А., Kuchansky, A., Andrashko, Yu., Biloshchytska, S. & Kuzka, О. (2017). The conceptual model of information technology evaluated the results of the research work. Management of Development of Complex Systems, 30, 163–168. [In Ukrainian]
- Biloshchytskyi, A., Kuchansky, А., Andrashko, Yu., Paliy, S., Biloshchytska, S., Bronin, S. et al. (2018). Development of technical component of the methodology for project-vector management of educational environment. Eastern-European Journal of Enterprise Technologies, 2/2 (92), 4–13. doi: 10.15587/1729-4061.2018.126301
- Moed, H., Glanzel, W. & Schmoch, U. (2004). Handbook of Quantitative Science and Technology Research. Springer Netherlands, 800. ISBN 978-1-4020-2755-0.
- Ying, Ding. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics, 5 (1), 187–203. doi: 10.1016/j.joi.2010.10.008
- Hou, H., Kretschmer, H. & Liu, Z. (2008). The Structure of Scientific Collaboration Networks in Scientometrics. Scientometrics, 75, 189-202.
- Barabási, A.-L. (2002). The New Science of Networks. Perseus Books Group, 288.
- Kobourov, S.G. (2012). Spring Embedders and Force-Directed Graph Drawing Algorithms. Biocode, URL: https://arxiv.org/abs/1201.3011
- Long, J.C., Cunningham, F.C., Carswell, P. & Braithwaite, J. (2013). Who are the key players in a new translational research network? BMC Health Serv Res, 13, 338. doi: 10.1186/1472-6963-13-338
- Øystein, O. (1967). Theory of graphs. Colloquium Publications, American Mathematical Society, 104.
- Bavelas, A. (1950). Communication patterns in task-oriented groups. Journal of the Acoustical Society of America, 22, 725 – 730.
- Marchiori, M. & Latora, V. (2000). Harmony in the small-world. Physica A: Statistical Mechanics and its Applications, 285 (3–4), 539–546. doi: 10.1016/s0378-4371(00)00311-3
- Newman, M.E. (2010). Networks: An Introduction. Published to Oxford Scholarship, 784. doi: 10.1093/acprof:oso/9780199206650.003.0006
- Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z. & Wagner, D. (2008). On Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188. doi: 10.1109/TKDE.2007.190689.
- Watts, D.J. & Strogatz, S. (1998). Collective dynamics of 'small-world' networks. Nature, 393, 440 – 442.
- Kemper, A. (2010). Valuation of Network Effects in Software Markets: A Complex Networks Approach (Contributions to Management Science) 2010 Edition, Kindle Edition, 330.
- Egghe, L. & Rousseau, R. (1990). Introduction to Infometrics. Amsterdam: Elsevier, 450.
- Manning, C.D., Raghavan, P. & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press. Retrieved, 506.
- Leskovec, J., Rajaraman, A. & Ullman, J.D. (2014). Mining of Massive Datasets 2nd Edition, Kindle Edition, 480.
- Yudhoatmojo, S.B. & Samuar, M.A. (2017). Community detection on citation network of dblp data sample set using linkrank algorithm. Procedia Computer Science, 124, 29 – 37.
- Hu, Y. (2005). Efficient and high quality forcedirected graph drawing. Mathematica Journal, 10, 37 – 71.
- Small, H. (1973). Co-citation in the scientific literature: a new measure of the relationship between two documents. Journal of the American Society for Information Science, 24, 265 – 269.
- Garfield, E. (2001). From Bibliographic Coupling to Co-CitationAnalysis Via Algorithmic Historio-Bibliography. A citationist’s tribute to Belver C. Griffith, Presented at Drexel University, Philadelphia, PA, URL: https://garfield.library.upenn.edu/papers/drexelbelvergriffith92001.pdf
- Porter, A.L. & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719 – 745.
- National Academies of Sciences Engineering Medicine. Facilitating Interdisciplinary Research. URL: https://www.nap.edu/catalog/11153/facilitating-interdisciplinary-research
- Bhattacharya, S. & Basu, P. (1998). Mapping a research area as the micro level using co-word analysis. Scientometrics, 43(3), 359–372. doi:10.1007/BF02457404
- Glänzel, W. (2012). Bibliometric methods for detecting and analysing emerging research topics. El profesional de la informacion, 21(2), 194 – 201.
- Mulesa, O., Geche, F. & Batyuk, A. (2015). Information technology for determining structure of social group based on fuzzy c-means. Proceedings of the International Conference on Computer Sciences and Information Technologies (CSIT), 60–62. doi: 10.1109/STC-CSIT.2015.7325431
- Shvets, A., Devyatkin, D., Sochenkov, I., Tikhomirov, I., Popov, K. & Yarygin, K. (2015). Detection of current research directions based on full-text clustering. Proceedings of the Science and Information Conference (SAI), 152–156. doi: 10.1109/SAI.2015.7237186
- Samatova, N., Hendrix, W., Jenkins, J., Padmanabhan, K. & Chakraborty, A. (2013). Practical Graph Mining with R Chapman and Hall/CRC, 495.
- Blondel, V., Guillaume, J., Lambriotte, R. & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, P10008. doi:10.1088/1742-5468/2008/10/P10008
- Seifi, M. & Guillaume, J. (2012). Community codes in evolving networks. 2012 International World Wide Web Conference (WWW), 1173–1180. doi:10.1145/2187980.2188258
- Ovelgönne, M. & Geyer-Schulz, A. (2013). An ensemble learning strategy for graph clustering. Contemporary Mathematics, 588, 187–205. doi:10.1090/conm/588/11701
- Zhang, T., Ramakrishnan, R. & Livny, M. (1996). BIRCH: an efficient data clustering method for very large databases. Proceedings of the 1996 ACM SIGMOD international conference on Management of data, 25 (2), 103 – 114. doi:10.1145/233269.233324
- Otradskaya, T. & Gogunskii, V. (2016). Development process models for evaluation of performance of the educational establishments. Eastern-European Journal of Enterprise Technologies, 3(81), 12–21. doi:10.15587/1729-4061.2016.66562
- Otradskaya, T., Gogunskii, V., Antoschuk, S. & Kolesnikov, O. (2016). Development of parametric model of prediction and evaluation of the quality level of educational institutions. Eastern-European Journal of Enterprise Technologies, 5(3(83)),
12 – 21. doi:10.15587/1729-4061.2016.80790 - Blei, D.M., Ng, A.Y. & Jordan, M.I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3,
993 – 1022. - Pawar, R.S., Sobhgol, S., Durand, G.C., Pinnecke, M., Broneske, D. & Saake, G. (2018). Codd’s World: Topics and their Evolution in the Database Community Publication Graph. Grundlagen von Datenbanken, 74 – 81.
- Coccia, M. (2018). General properties of the evolution of research fields: a scientometric study of human microbiome evolutionary robotics and astrobiology. Scientometrics, 117(2), 1265-1283. doi: 10.1007/s11192-018-2902-8
- Higham, K. W., Governale, M., Jaffe, B. & Zulicke, U. (2017). Unraveling the dynamics of growth, aging and inflation for citations to scientific articles from specific research fields. Journal of Informetrics, 11, 1190 – 1200.