Новітній підхід до застосування теорії Дезера – Смарандаке при класифікуванні земляного покриву під час проведення дистанційного зондування із використанням безпілотних літальних апаратів
1. Yager, R. (1987). On the Dempster-Shafer Framework and New Combination Rules. Information Sciences, 41, 93–137.
2. McCoy, R. M. (2005). Fields Methods in Remote Sensing. New York: Guilford Press, 150–160.
3. Smarandache, F., Dezert, J. (2005). A Simple Proportional Conflict Redistribution Rule. International Journal of Applied Mathematics and Statistics, 3, J05, 1–36.
4. Smets, Ph. (1990). The combination of evidence in the Transferable Belief Model. IEEE Trans. On Pattern Analysis and Machine Intelligence, 12, 5, 447–458.
5. Dezert, J. (2002). Foundations for a new theory of plausible and paradoxical reasoning. Information and Security, 9,
13–57.
6. Smarandache, F., Dezert, J. (2006). Proportional conflict redistribution rules for information fusion. American Research Press, 2, 61–103.
7. Smarandache, F., Dezert, J. (2004). Applications and advances of DSmT for Information Fusion. American Research Press, Rehoboth, 1, 3–35.
8. Smarandache, F., Dezert, J. (2006). Advances and applications of DSmT for information fusion. Rehoboth: American Research Press, 1, 461.
9. Smets, P., Henrion, M., Shachter, R. D., Kanal, L. N., Lemmer, J. F. (1990). Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence. North Holland, Amsterdam, 5, 29–40.
10. Alpert, S. (2020). A new approach to applying the discount rule in hyperspectral satellite image classification. Management of Development of Complex Systems, 43, 76 – 82.
11. Popov, M. A., Alpert, S. I., Podorvan, V. N. (2017). Satellite image classification method using the Dempster-Shafer approach. Izvestiya, atmospheric and oceanic. Physics, 53(9), 1112–1122.
12. Zhang, L., Yager, R.R., Kacprzyk J., Fedrizzi, M. (1994). Representation, independence, and combination of evidence in the Dempster-Shafer theory. Advances in the Dempster-Shafer Theory of Evidence. New York: John Wiley and Sons, Inc.,
51–69.
13. Alpert, S. I. (2021). Data combination method in Remote Sensing tasks in case of conflicting information sources. Ukrainian Journal of Remote Sensing, 8 (3), 44–48. URL: https://doi.org/10.36023/ujrs.2021.8.3.201.
14. Popov, M., Zaitsev, O., Alpert, S., Alpert, M., Stambirska, R. (2020). A method to ranking reliability of sensors of multisensor system: interval-valued number case. Тhe IEEE 2nd International Conference on Advanced Trends in Information Theory, 395–398.
15. Smets, P. (2007). Analyzing the Combination of Conflicting Belief Functions. Information Fusion, 8, 387–412.
16. Alpert, М. І., Alpert, S. І. (2021). A new approach to accuracy assessment of land-cover classification in UAV-based Remote Sensing. XXth International Conference “Geoinformatics: Theoretical and Applied Aspects”, Kyiv, 1–5.
17. Popov, M. O., Zaitsev, O. V., Stambirska, R. G., Alpert, S. I., & Kondratov, O. M. (2021). A Correlative Method to Rank Sensors with Information Reliability: Interval-Valued Numbers Case. Reliability Engineering and Computational Intelligence (Studies in Computational Intelligence book series). Springer International Publishing, 275-291, doi 10.1007/978-3-030-74556-1.
1. Yager, R. (1987). On the Dempster-Shafer Framework and New Combination Rules. Information Sciences, 41, 93–137.
2. McCoy, R. M. (2005). Fields Methods in Remote Sensing. New York: Guilford Press, 150–160.
3. Smarandache, F., Dezert, J. (2005). A Simple Proportional Conflict Redistribution Rule. International Journal of Applied Mathematics and Statistics, 3, J05, 1–36.
4. Smets, Ph. (1990). The combination of evidence in the Transferable Belief Model. IEEE Trans. On Pattern Analysis and Machine Intelligence, 12, 5, 447–458.
5. Dezert, J. (2002). Foundations for a new theory of plausible and paradoxical reasoning. Information and Security, 9,
13–57.
6. Smarandache, F., Dezert, J. (2006). Proportional conflict redistribution rules for information fusion. American Research Press, 2, 61–103.
7. Smarandache, F., Dezert, J. (2004). Applications and advances of DSmT for Information Fusion. American Research Press, Rehoboth, 1, 3–35.
8. Smarandache, F., Dezert, J. (2006). Advances and applications of DSmT for information fusion. Rehoboth: American Research Press, 1, 461.
9. Smets, P., Henrion, M., Shachter, R. D., Kanal, L. N., Lemmer, J. F. (1990). Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence. North Holland, Amsterdam, 5, 29–40.
10. Alpert, S. (2020). A new approach to applying the discount rule in hyperspectral satellite image classification. Management of Development of Complex Systems, 43, 76 – 82.
11. Popov, M. A., Alpert, S. I., Podorvan, V. N. (2017). Satellite image classification method using the Dempster-Shafer approach. Izvestiya, atmospheric and oceanic. Physics, 53(9), 1112–1122.
12. Zhang, L., Yager, R.R., Kacprzyk J., Fedrizzi, M. (1994). Representation, independence, and combination of evidence in the Dempster-Shafer theory. Advances in the Dempster-Shafer Theory of Evidence. New York: John Wiley and Sons, Inc.,
51–69.
13. Alpert, S. I. (2021). Data combination method in Remote Sensing tasks in case of conflicting information sources. Ukrainian Journal of Remote Sensing, 8 (3), 44–48. URL: https://doi.org/10.36023/ujrs.2021.8.3.201.
14. Popov, M., Zaitsev, O., Alpert, S., Alpert, M., Stambirska, R. (2020). A method to ranking reliability of sensors of multisensor system: interval-valued number case. Тhe IEEE 2nd International Conference on Advanced Trends in Information Theory, 395–398.
15. Smets, P. (2007). Analyzing the Combination of Conflicting Belief Functions. Information Fusion, 8, 387–412.
16. Alpert, М. І., Alpert, S. І. (2021). A new approach to accuracy assessment of land-cover classification in UAV-based Remote Sensing. XXth International Conference “Geoinformatics: Theoretical and Applied Aspects”, Kyiv, 1–5.
17. Popov, M. O., Zaitsev, O. V., Stambirska, R. G., Alpert, S. I., & Kondratov, O. M. (2021). A Correlative Method to Rank Sensors with Information Reliability: Interval-Valued Numbers Case. Reliability Engineering and Computational Intelligence (Studies in Computational Intelligence book series). Springer International Publishing, 275-291, doi 10.1007/978-3-030-74556-1.