ОГЛЯД ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ ОНЛАЙН-ТРЕЙДИНГУ
1. Gao, M., Huang, J. (2020). Informing the market: the effect of modern information technologies on information production. The review of Financial Studies, 33 (4), 1367–1411 (https://doi.org/10.1093/rfs/hhz100).
2. Chang, P. C., Liao, T. W., Lin, J. J., Fan, C. Y. (2011). A dynamic threshold decision system for stock trading signal detection. Applied Soft Computing, 11 (5), 3998–4010.
3. Sun, Q., Lim, C. C., Shi, P., Liu, F. (2016). Moving horizon estimation for Markov jump systems. Information Science, 367, 143–158.
4. Jiang, H., Zhang, H., Luo, Y., Wang, J. (2016). Optimal tracking control for completely unknown nonlinear discrete-time Markov jump systems using data-based reinforcement learning method. Neurocomputing, 194, 176–182 (https://doi.org/10.1016/j.neucom.2016.02.029).
5. Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., Moore, J. H. (2016). Automating biomedical data science through tree-based pipeline optimization. European Conference on the Applications of Evolutionary Computation, 123–137.
6. Dunis, C. L., Rosillo, R., de la Fuente, D., Pino, R. (2013). Forecasting IBEX-35 moves using support vector machines. Neural Compututing Applied, 23 (1), 229–236
7. Zhou, F., Zhou, H. M., Yang, Z. H., Yang, L. H. (2019). EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction. Expert System Applied, 115, 136–151.
8. Kumar, Hemanth P., Patil, Basavaraj S. (2018). Forecasting volatility trend of INR USD currency pair with deep learning LSTM techniques. 2018. 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS) (DOI: 10.1109/CSITSS.2018.8768767).
9. Ling, X., Deng, W., Gu, C., Zhou, H., Li, C., Sun, F. (2017). Model ensemble for click prediction in Bing search Ads, in: Proceedings of the 26th International. Conference on World Wide Web Companion, pp. 689–698.
10. Pradeepkumar, D., Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network. Applied Soft Computing, 58, 35–52.
11. This Is What Makes 2022 Best Time for Launching Personal Finance App. (2022). URL: https://shakuro.com/blog/what-makes-now-a-great-time-to-build-a-personal-finance-app.
12. How Top Personal Finance Companies Built The Best PFM Apps. URL: https://www.cbinsights.com/research/personal-finance-apps-strategies.
13. Sacchitello, M. (2020). Best Online Brokers and Trading Platforms. ERL: https://www.investopedia.com/best-online-brokers-4587872.
14. Ahmed, M. K., Wajiga, G. M., Blamah, N. V. & Modi, B. (2019). Stock market forecasting using ant colony optimization based algorithm. Am J Math Comput Model, 4(3), 52–57.
15. Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F. & Li, L. (2022). Cryptocurrency trading: a comprehensive survey. Financial Innovation, 8(1), 1–59.
16. Czupryna, M., Kubińska, E. (2015) .What makes technical analyses popular? Argumenta oeconomica cracoviensia, 12, 53–66.
17. Wong, W., Manzur, M., Chew, B. (2013). How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics, 13 (7). (https://doi.org/10.1080/0960310022000020906).
18. Sebastião, H. M. C. V., Cunha, P. J. O. R. D. & Godinho, P. M. C. (2021). Cryptocurrencies and blockchain. Overview and future perspectives. International Journal of Economics and Business Research, 21(3), 305-342.
19. Orús, R., Mugel, S., Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4 (https://doi.org/10.1016/j.revip.2019.100028).
20. Atsalakis, G., Dimitrakakis, E., Zopounidis, C. (2011). Elliott Wave Theory and neuro-fuzzy systems, in stock market prediction: The WASP system. Expert Systems with Applications, 38 (8), 9196–9206 (https://doi.org/10.1016/j.eswa.2011.01.068)
21. Angelo, E., Grimaldi, G. (2017). The Effectiveness of the Elliott Waves Theory to Forecast Financial Markets: Evidence from the Currency Market. International Business Research, 10 (6) (https://doi.org/10.5539/ibr.v10n6p1).
22. Ibrahim, A., Kashef, R. & Corrigan, L. (2021). Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers & Electrical Engineering, 89, 106905.
23. Gidea, M., Goldsmith, D., Katz, Y., Roldan, P. & Shmalo, Y. (2020). Topological recognition of critical transitions in time series of cryptocurrencies. Physica A: Statistical mechanics and its applications, 548, 123843.
24. Stankovska, A. (2017). Global Derivatives Market. SEEU Review, 81–93 (DOI: 10.1515/seeur-2017-0006).
25. Cuny, C. (2018) When knowledge is power: Evidence from the municipal bond market. Journal of Accounting and Economics, 65, 109–28.
26. Goldstein, I., Yang, S., Zuo, L. (2020). The Real Effects of Modern Information Technologies: Evidence from the EDGAR Implementation. National Bureau of economic research, 27529. (DOI 10.3386/w27529).
27. Hong, D., Van, V., Minh, N. (2020). Derivatives market and economic growth nexus: Policy implications for emerging markets. The North American Journal of Economics and Finance, 54. (https://doi.org/10.1016/j.najef.2018.10.014).
28. Kim, J., Moon, N. (2019). BiLSTM model based on multivariate time series data in multiple field for forecasting trading area. J Ambient Intell Human Comput. (https://doi.org/10.1007/s12652-019-01398-9).
29. Lyakina, M., Koyundzhiyska-Davidkova, B., Popp, J. (2021). Technical analysis and its theoretical basis for trading activity management, Ekonomicko-manazerske spektrum, 15 (2), 52-64.
30. Zhou, F., Zhang, Q., Sornette, D., Jiang, L. (2019). Cascading logistics regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84. (https://doi.org/10.1016/j.asoc.2019.105747).
1. Gao, M., Huang, J. (2020). Informing the market: the effect of modern information technologies on information production. The review of Financial Studies, 33 (4), 1367–1411 (https://doi.org/10.1093/rfs/hhz100).
2. Chang, P. C., Liao, T. W., Lin, J. J., Fan, C. Y. (2011). A dynamic threshold decision system for stock trading signal detection. Applied Soft Computing, 11 (5), 3998–4010.
3. Sun, Q., Lim, C. C., Shi, P., Liu, F. (2016). Moving horizon estimation for Markov jump systems. Information Science, 367, 143–158.
4. Jiang, H., Zhang, H., Luo, Y., Wang, J. (2016). Optimal tracking control for completely unknown nonlinear discrete-time Markov jump systems using data-based reinforcement learning method. Neurocomputing, 194, 176–182 (https://doi.org/10.1016/j.neucom.2016.02.029).
5. Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., Moore, J. H. (2016). Automating biomedical data science through tree-based pipeline optimization. European Conference on the Applications of Evolutionary Computation, 123–137.
6. Dunis, C. L., Rosillo, R., de la Fuente, D., Pino, R. (2013). Forecasting IBEX-35 moves using support vector machines. Neural Compututing Applied, 23 (1), 229–236
7. Zhou, F., Zhou, H. M., Yang, Z. H., Yang, L. H. (2019). EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction. Expert System Applied, 115, 136–151.
8. Kumar, Hemanth P., Patil, Basavaraj S. (2018). Forecasting volatility trend of INR USD currency pair with deep learning LSTM techniques. 2018. 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS) (DOI: 10.1109/CSITSS.2018.8768767).
9. Ling, X., Deng, W., Gu, C., Zhou, H., Li, C., Sun, F. (2017). Model ensemble for click prediction in Bing search Ads, in: Proceedings of the 26th International. Conference on World Wide Web Companion, pp. 689–698.
10. Pradeepkumar, D., Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network. Applied Soft Computing, 58, 35–52.
11. This Is What Makes 2022 Best Time for Launching Personal Finance App. (2022). URL: https://shakuro.com/blog/what-makes-now-a-great-time-to-build-a-personal-finance-app.
12. How Top Personal Finance Companies Built The Best PFM Apps. URL: https://www.cbinsights.com/research/personal-finance-apps-strategies.
13. Sacchitello, M. (2020). Best Online Brokers and Trading Platforms. ERL: https://www.investopedia.com/best-online-brokers-4587872.
14. Ahmed, M. K., Wajiga, G. M., Blamah, N. V. & Modi, B. (2019). Stock market forecasting using ant colony optimization based algorithm. Am J Math Comput Model, 4(3), 52–57.
15. Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F. & Li, L. (2022). Cryptocurrency trading: a comprehensive survey. Financial Innovation, 8(1), 1–59.
16. Czupryna, M., Kubińska, E. (2015) .What makes technical analyses popular? Argumenta oeconomica cracoviensia, 12, 53–66.
17. Wong, W., Manzur, M., Chew, B. (2013). How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics, 13 (7). (https://doi.org/10.1080/0960310022000020906).
18. Sebastião, H. M. C. V., Cunha, P. J. O. R. D. & Godinho, P. M. C. (2021). Cryptocurrencies and blockchain. Overview and future perspectives. International Journal of Economics and Business Research, 21(3), 305-342.
19. Orús, R., Mugel, S., Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4 (https://doi.org/10.1016/j.revip.2019.100028).
20. Atsalakis, G., Dimitrakakis, E., Zopounidis, C. (2011). Elliott Wave Theory and neuro-fuzzy systems, in stock market prediction: The WASP system. Expert Systems with Applications, 38 (8), 9196–9206 (https://doi.org/10.1016/j.eswa.2011.01.068)
21. Angelo, E., Grimaldi, G. (2017). The Effectiveness of the Elliott Waves Theory to Forecast Financial Markets: Evidence from the Currency Market. International Business Research, 10 (6) (https://doi.org/10.5539/ibr.v10n6p1).
22. Ibrahim, A., Kashef, R. & Corrigan, L. (2021). Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers & Electrical Engineering, 89, 106905.
23. Gidea, M., Goldsmith, D., Katz, Y., Roldan, P. & Shmalo, Y. (2020). Topological recognition of critical transitions in time series of cryptocurrencies. Physica A: Statistical mechanics and its applications, 548, 123843.
24. Stankovska, A. (2017). Global Derivatives Market. SEEU Review, 81–93 (DOI: 10.1515/seeur-2017-0006).
25. Cuny, C. (2018) When knowledge is power: Evidence from the municipal bond market. Journal of Accounting and Economics, 65, 109–28.
26. Goldstein, I., Yang, S., Zuo, L. (2020). The Real Effects of Modern Information Technologies: Evidence from the EDGAR Implementation. National Bureau of economic research, 27529. (DOI 10.3386/w27529).
27. Hong, D., Van, V., Minh, N. (2020). Derivatives market and economic growth nexus: Policy implications for emerging markets. The North American Journal of Economics and Finance, 54. (https://doi.org/10.1016/j.najef.2018.10.014).
28. Kim, J., Moon, N. (2019). BiLSTM model based on multivariate time series data in multiple field for forecasting trading area. J Ambient Intell Human Comput. (https://doi.org/10.1007/s12652-019-01398-9).
29. Lyakina, M., Koyundzhiyska-Davidkova, B., Popp, J. (2021). Technical analysis and its theoretical basis for trading activity management, Ekonomicko-manazerske spektrum, 15 (2), 52-64.
30. Zhou, F., Zhang, Q., Sornette, D., Jiang, L. (2019). Cascading logistics regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84. (https://doi.org/10.1016/j.asoc.2019.105747).