Розробка моделі оцінки комфортності багатоквартирного будинку з використанням “методів штучного інтелекту”
1. Tsiutsiura, Mykola; Kostyshynа, Nataliia; Yerukaiev, Andrii; Tyshchenko, Dmytro. (2022). Representation of comfort idicators by means of DFD-diagrams. Management of Development of Complex Systems, 49, 26–32.
2. Dogan Ibrahim. (2016). An overview of soft computing. 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016. Vienna, Austria. DOI: https://www.sciencedirect.com/science/article/pii/S1877050916325467.
3. Tsiutsiura, S.V., Kyivska, K.I., Tsiutsiura, M.I., Kryvoruchko, O.V., Dmytrychenko, A.M. (2019). Formation of a generalized information model of a construction object. International Journal of Mechanical Engineering and Technology, 10(2), 69–79.
4. Заяць В. С. (2019). Розвиток житлового будівництва як фактор формування житлових умов населення. Демографія та соціальна економіка, 2 (3), 137–151. DOI: https://dse.org.ua/arhcive/36/10.pdf.
5. Цифра Т. Ю. (2018). Класифікація житла за типами доступності методом дискримінантного аналізу. Ефективна економіка, 9. URL: http://www.economy.nayka.com.ua/pdf/9_2018/43.pdf.
6. Kyivska, K. I., Tsiutsiura, S. V., Tsiutsiura, M. I., Yerukaiev, A. V., Hots, V. V. (2019). A study of the concept of parametric modeling of construction objects International Journal of Advanced Research in Engineering and Technology, 10(2), 636–646.
7. Yi-Nan Lin, Tsang-Yen Hsieh, Cheng-Ying Yang, Victor R.L. Shen, Tony TongYing Juang & Ting-Jui Huang. (2020). Review on Petri net modeling and analysis of a smartphone manufacturing system. Cogent Engineering, 7:1, 1851630 Available at: https://www.tandfonline.com/doi/pdf/10.1080/23311916.2020.1851630?needAccess=true.
8. Pratibha Rani, Arunodaya Raj Mishra. (2022). Interval-valued fermatean fuzzy sets with multi-criteria weighted aggregated sum product assessment-based decision analysis framework. Neural Computing and Applications (2022) 34:8051–8067. Available at: https://link.springer.com/content/pdf/10.1007/s00521-021-06782-1.pdf.
9. Sourabh Katoch, Sumit Singh Chauhan, Vijay Kumar. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80, 8091–8126. Available at: https://link.springer.com/content/pdf/10.1007/s11042-020-10139-6.pdf.
10. Paul C. Jennings, Steen Lysgaard, Jens Strabo Hummelshøj, Tejs Vegge, Thomas Bligaard. (2019). Genetic algorithms for computational materials discovery accelerated by machine learning. npj Computational Materials, 5(46). Available at: https://www.nature.com/articles/s41524-019-0181-4.pdf.
11. Mykola, T., Svitlana, T., Andrii, Y., Kateryna, K., Mykola, K. (2020). Protection of information in assessing the factors of influence ATIT 2020 – Proceedings: 2020 2nd IEEE International Conference on Advanced Trends in Information Theory,
285–289.
12. Tsiutsiura, Mykola, Kostyshynа, Nataliia, Yerukaiev, Andrii & Tyshchenko, Dmytro. (2022). Representation of comfort idicators by means of DFD–diagrams. Management of Development of Complex Systems, 49, 26–32, dx.doi.org\10.32347/2412–9933.2022.49.26–32.
13. Cengiz Kahraman, Başar Öztayşi, Sezi Çevik Onar. (2016). A Comprehensive literature review of 50 years of fuzzy set theory, International Journal of Computational Intelligence Systems, 9 (1). Available at: https://www.researchgate.net/publication/298208497_A_Comprehensive_Literature_Review_of_50_Years_of_Fuzzy_Set_Theory.
14. Su-Hyun Han, Ko Woon Kim, SangYun Kim, Young Chul Youn. (2018). Artificial neural network: understanding the basic concepts without mathematics. Dement Neurocogn Disord, 17(3), 83–89. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428006/pdf/dnd-17-83.pdf.
15. Volodymyr Lytvynenko, Olena Kryvoruchko, Irina Lurie, Nataliia Savina, Oleksandr Naumov, Mariia Voronenko. (2020). Comparative studies of self-organizing algorithms for forecasting economic parameters. 12(6), 1–15.
1. Tsiutsiura, Mykola; Kostyshynа, Nataliia; Yerukaiev, Andrii; Tyshchenko, Dmytro. (2022). Representation of comfort idicators by means of DFD-diagrams. Management of Development of Complex Systems, 49, 26–32.
2. Dogan, Ibrahim. (2016). An overview of soft computing. 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016. Vienna, Austria. Available at: https://www.sciencedirect.com/science/article/pii/S1877050916325467.
3. Tsiutsiura, S. V., Kyivska, K. I., Tsiutsiura, M. I., Kryvoruchko, O. V., Dmytrychenko, A. M. (2019). Formation of a generalized information model of a construction object. International Journal of Mechanical Engineering and Technology, 10(2), 69–79.
4. Zaiats, V. S. (2019). The development of residential construction as a factor in the formation of living conditions of the population. Demography and Social Economy, 2 (3), 137–151. Available at: https://dse.org.ua/arhcive/36/10.pdf.
5. Tsyfra, T. Yu. (2018). Classification of housing according to types of availability by the method of discriminant analysis. Effective economy, 9. Available at: http://www.economy.nayka.com.ua/pdf/9_2018/43.pdf.
6. Kyivska, K. I., Tsiutsiura, S. V., Tsiutsiura, M. I., Yerukaiev, A. V., Hots, V. V. (2019). A study of the concept of parametric modeling of construction objects. International Journal of Advanced Research in Engineering and Technology, 10(2), 636–646.
7. Yi-Nan, Lin, Tsang-Yen, Hsieh, Cheng-Ying, Yang, Shen, Victor R.L. Tony, TongYing Juang & Ting-Jui, Huang. (2020). Review on Petri net modeling and analysis of a smartphone manufacturing system. Cogent Engineering, 7, 1, 1851630. Available at: https://www.tandfonline.com/doi/pdf/10.1080/23311916.2020.1851630?needAccess=true.
8. Pratibha, Rani, Arunodaya, Raj Mishra. (2022). Interval-valued fermatian fuzzy sets with multi-criteria weighted aggregated sum product assessment-based decision analysis framework. Neural Computing and Applications, 34, 8051–8067. Available at: https://link.springer.com/content/pdf/10.1007/s00521-021-06782-1.pdf.
9. Sourabh, Katoch, Sumit, Singh Chauhan, Vijay, Kumar. (2021). A review on genetic algorithms: past, present, and future. Multimedia Tools and Applications, 80, 8091–8126. Available at: https://link.springer.com/content/pdf/10.1007/s11042-020-10139-6.pdf.
10. Jennings, Paul C., Lysgaard, Steen, Hummelshøj, Jens Strabo, Vegge, Tejs, Bligaard, Thomas. (2019). Genetic algorithms for computational materials discovery accelerated by machine learning. Computational Materials, 5(46). Available at: https://www.nature.com/articles/s41524-019-0181-4.pdf.
11. Mykola, T., Svitlana, T., Andrii, Y., Kateryna, K., Mykola, K. (2020). Protection of information in assessing the
factors of influence ATIT 2020 – Proceedings: 2020 2nd IEEE International Conference on Advanced Trends in Information Theory, 285–289.
12. Tsiutsiura, Mykola, Kostyshyna, Nataliia, Yerukaiev, Andrii & Tyshchenko, Dmytro. (2022). Representation of comfort indicators by means of DFD-diagrams. Management of Development of Complex Systems, 49, 26–32, dx.doi.org\10.32347/2412–9933.2022.49.26–32.
13. Cengiz, Kahraman, Başar, Öztayşi, Sezi, Çevik Onar. (2016). A Comprehensive literature review of 50 years of fuzzy set theory. International Journal of Computational Intelligence Systems, 9 (1). Available at: https://www.researchgate.net/publication/298208497_A_Comprehensive_Literature_Review_of_50_Years_of_Fuzzy_Set_Theory.
14. Su-Hyun, Han, Ko Woon, Kim, SangYun, Kim, Young, Chul Youn. (2018). Artificial neural network: understanding the basic concepts without mathematics. Dement Neurocognitive Disord, 17(3), 83–89. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428006/pdf/dnd-17-83.pdf.
15. Lytvynenko, Volodymyr, Kryvoruchko, Olena, Lurie, Irina, Savina, Nataliia, Naumov, Oleksandr, Voronenko, Mariia. (2020). Comparative studies of self-organizing algorithms for forecasting economic parameters, 12 (6), 1–15.