Новий метод відбору спектральних каналів за наявності багатоспектральних даних із застосуванням критеріальної функції інформативності
1. Habermann, M., Fremont, V., Shiguemori E. H. (2017). Problem-based band selection for hyperspectral images. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1800–1803.
2. Bandos, T.V., Bruzzone L., Camps-Valls, L. G. (2009). Classification of Hyperspectral Images with Regulized Linear Disctiminant Analysis. IEEE Transactions оn Geoscience аnd Remote Sensing, 47(3), 862–873.
3. Jain, A. K., Dubes, R. C. (1988). Algorithms for Clastering Data. Englewood Cliffs (NJ). Prentice-Hall.
4. Smets, Ph. (1990). The combination of evidence in the Transferable Belief Model. IEEE Trans. On Pattern Analysis and Machine Intelligence, 12 (5), 447–458.
5. Gong, M., Zhang, M., Yuan, Y. (2015). Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images. IEEE Trans. Geosci. Remote Sens, 54, 544–557.
6. Sun, W., Du, Q. Hyperspectral band selection: A review. (2019). IEEE Geosci. Remote Sens. 7, 118–139.
7. Camps-Valls, G., Mooij, J., Scholkopf, B. (2010). Remote Sensing Feature Selection by Kernel Dependence Measures. IEEE Geoscience and Remote Sensing Letters, 7 (3), 587-591.
8. Popov, M. O., Zaitsev, O. V., Stambirska, R. G., Alpert, S. I., Kondratov, O. M. (2021). A Correlative Method to Rank Sensors with Information Reliability: Interval-Valued Numbers Case. Reliability Engineering and Computational Intelligence (Studies in Computational Intelligence book series). Springer International Publishing, 275-291, doi 10.1007/978-3-030-74556-1.
9. Keshava, N. (2004). Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Transactions on Geoscience and Remote Sensing, 42 (7), 1552-1565.
10. Alpert, S. (2022). The new approach to applying the Dezert – Smarandache theory in land-cover classification in uav-based remote sensing. Management of Development of Complex Systems, 49, 33–39, dx.doi.org\10.32347/2412-9933.2022.49.33-39.
11. Popov, M. A. Alpert, S. I., Podorvan, V. N. (2017). Satellite image classification method using the Dempster-Shafer approach. Izvestiya, atmospheric and oceanic. Physics, 53(9), 1112–1122.
12. Popov, M., Zaitsev, O., Alpert, S., Alpert, M., Stambirska, R. (2020). A method to ranking reliability of sensors of multisensor system: interval-valued number case. Тhe IEEE 2nd International Conference on Advanced Trends in Information Theory, 395–398.
13. Alpert, S. I. (2021). Data combination method in Remote Sensing tasks in case of conflicting information sources. Ukrainian Journal of Remote Sensing, 8(3), 44–48. URL: https://doi.org/10.36023/ujrs.2021.8.3.201.
14. Yang, C., Bruzzone, L., Zhao, H., Tan, Y., Guan, R. (2018). Superpixel-based unsupervised band selection for classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens, 56, 7230–7245.
15. Du, Q., Yang H. (2008). Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis. IEEE Geoscience and Remote Sensing Letters, 5 (4), 564-568.
16. Alpert, М. І., Alpert, S. І. (2021). A new approach to accuracy assessment of land-cover classification in UAV-based Remote Sensing. XXth International Conference “Geoinformatics: Theoretical and Applied Aspects”, Kyiv, 1–5.
17. Luo, F., Huang, H., Yang, Y., Lv., Z. (2016). Dimensionality reduction of hyperspectral images with local geometric structure Fisher analysis. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 52–55.
18. Alpert, S. I., Alpert, M. I. (2022). A new land-cover classification approach in UAV-based Remote Sensing for solution ecological tasks. XVI International Scientific Conference «Monitoring of Geological Processes and Ecological Condition of the Environment», 1–5.
1. Habermann, M., Fremont, V., Shiguemori E. H. (2017). Problem-based band selection for hyperspectral images. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1800–1803.
2. Bandos, T.V., Bruzzone L., Camps-Valls, L. G. (2009). Classification of Hyperspectral Images with Regulized Linear Disctiminant Analysis. IEEE Transactions оn Geoscience аnd Remote Sensing, 47(3), 862–873.
3. Jain, A. K., Dubes, R. C. (1988). Algorithms for Clastering Data. Englewood Cliffs (NJ). Prentice-Hall.
4. Smets, Ph. (1990). The combination of evidence in the Transferable Belief Model. IEEE Trans. On Pattern Analysis and Machine Intelligence, 12 (5), 447–458.
5. Gong, M., Zhang, M., Yuan, Y. (2015). Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images. IEEE Trans. Geosci. Remote Sens, 54, 544–557.
6. Sun, W., Du, Q. Hyperspectral band selection: A review. (2019). IEEE Geosci. Remote Sens. 7, 118–139.
7. Camps-Valls, G., Mooij, J., Scholkopf, B. (2010). Remote Sensing Feature Selection by Kernel Dependence Measures. IEEE Geoscience and Remote Sensing Letters, 7 (3), 587-591.
8. Popov, M. O., Zaitsev, O. V., Stambirska, R. G., Alpert, S. I., Kondratov, O. M. (2021). A Correlative Method to Rank Sensors with Information Reliability: Interval-Valued Numbers Case. Reliability Engineering and Computational Intelligence (Studies in Computational Intelligence book series). Springer International Publishing, 275-291, doi 10.1007/978-3-030-74556-1.
9. Keshava, N. (2004). Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Transactions on Geoscience and Remote Sensing, 42 (7), 1552-1565.
10. Alpert, S. (2022). The new approach to applying the Dezert – Smarandache theory in land-cover classification in uav-based remote sensing. Management of Development of Complex Systems, 49, 33–39, dx.doi.org\10.32347/2412-9933.2022.49.33-39.
11. Popov, M. A. Alpert, S. I., Podorvan, V. N. (2017). Satellite image classification method using the Dempster-Shafer approach. Izvestiya, atmospheric and oceanic. Physics, 53(9), 1112–1122.
12. Popov, M., Zaitsev, O., Alpert, S., Alpert, M., Stambirska, R. (2020). A method to ranking reliability of sensors of multisensor system: interval-valued number case. Тhe IEEE 2nd International Conference on Advanced Trends in Information Theory, 395–398.
13. Alpert, S. I. (2021). Data combination method in Remote Sensing tasks in case of conflicting information sources. Ukrainian Journal of Remote Sensing, 8(3), 44–48. URL: https://doi.org/10.36023/ujrs.2021.8.3.201.
14. Yang, C., Bruzzone, L., Zhao, H., Tan, Y., Guan, R. (2018). Superpixel-based unsupervised band selection for classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens, 56, 7230–7245.
15. Du, Q., Yang H. (2008). Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis. IEEE Geoscience and Remote Sensing Letters, 5 (4), 564-568.
16. Alpert, М. І., Alpert, S. І. (2021). A new approach to accuracy assessment of land-cover classification in UAV-based Remote Sensing. XXth International Conference “Geoinformatics: Theoretical and Applied Aspects”, Kyiv, 1–5.
17. Luo, F., Huang, H., Yang, Y., Lv., Z. (2016). Dimensionality reduction of hyperspectral images with local geometric structure Fisher analysis. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 52–55.
18. Alpert, S. I., Alpert, M. I. (2022). A new land-cover classification approach in UAV-based Remote Sensing for solution ecological tasks. XVI International Scientific Conference «Monitoring of Geological Processes and Ecological Condition of the Environment», 1–5.