Моделі, методи і засоби планування раціону харчування людини
1. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study. (2017).
2. Balintfy, J. L. (1964). Menu planning by computer. Communications of the ACM, 7(4):255–259.
3. Roy, D, Dutta, M. (2022). A systematic review and research perspective on recommender systems. J Big Data, 9, 59.
4. Zhang, R., Liu, Q. D., Chun-Gui, J., Wei, X. and Huiyi, Ma. (2014). Collaborative Filtering for Recommender Systems. 2014 Second International Conference on Advanced Cloud and Big Data, Huangshan, China, 2014, pp. 301–308.
doi: 10.1109/CBD.2014.47.
5. Tran, T. N., Atas, T. T., Felfernig, M. A. & Stettinger, M. (2018). An overview of recommender systems in the healthy food domain. Journal Intelligent Information Systems, 50, 501–526.
6. Yasmin, Beij. (2019). A Literature Review on Food Recommendation Systems to Improve Online Consumer Decision-Making.
7. Shuai, Zhang, Lina, Yao, Aixin, Sun, Yi, Tay. (2019). Deep Learning based Recommender System: A Survey and New Perspectives. ACM Computing Surveys, 52, 1.
8. Chen, X., Liu, D., Xiong Z., Zha, Z. J. (2021). Learning and fusing multiple user interest representations for micro-video and movie recommendations. IEEE Trans Multimedia, 23, 484–496.
9. Aditya, G. M., Hoode, A., Rai, K. A., Biradar, G., Kumarа, M. A., Kumar, M. V., Prashanth, B. S., Sneha, H. R, Shivadarshan, S. L. (2018). Machine learning based platform and recommendation system for food ordering services within premises.
10. Naik, P. A. (2017). Intelligent food recommendation system using machine learning. Nutrition, 5 (8).
11. Xiangnan, He, Lizi, Liao, Hanwang, Zhang, Liqiang, Nie, Xia, Hu and Tat-Seng, Chua. (2017). Neural collaborative filtering. WWW, 173–182.
12. Agarap, Abien Fred. (2018). Deep Learning using Rectified Linear Units (ReLU). ArXiv abs/1803.08375 (2018).
13. Oh, Y., Choi, A., Woo, W. (2010). U-babsang: A context-aware food recommendation system. Journal of Supercomputing, 54 (1), 61-81.
14. Gao, X., Feng, F., Huang, H., Mao, X.-L., Lan, T., Chi, Z. (2022). Food recommendation with graph convolutional network. Information Sciences, 584, 170–183.
15. Dubey, Shiv Ram et al. (2021). Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92–108.
16. Ke, G., Du, H. L., Chen, Y. C. (2021). Cross-platform dynamic goods recommendation system based on reinforcement learning and social networks. Appl Soft Computing, 104, 107213.
1. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study. (2017).
2. Balintfy, J. L. (1964). Menu planning by computer. Communications of the ACM, 7(4):255–259.
3. Roy, D, Dutta, M. (2022). A systematic review and research perspective on recommender systems. J Big Data, 9, 59.
4. Zhang, R., Liu, Q. D., Chun-Gui, J., Wei, X. and Huiyi, Ma. (2014). Collaborative Filtering for Recommender Systems. 2014 Second International Conference on Advanced Cloud and Big Data, Huangshan, China, 2014, pp. 301–308.
doi: 10.1109/CBD.2014.47.
5. Tran, T. N., Atas, T. T., Felfernig, M. A. & Stettinger, M. (2018). An overview of recommender systems in the healthy food domain. Journal Intelligent Information Systems, 50, 501–526.
6. Yasmin, Beij. (2019). A Literature Review on Food Recommendation Systems to Improve Online Consumer Decision-Making.
7. Shuai, Zhang, Lina, Yao, Aixin, Sun, Yi, Tay. (2019). Deep Learning based Recommender System: A Survey and New Perspectives. ACM Computing Surveys, 52, 1.
8. Chen, X., Liu, D., Xiong Z., Zha, Z. J. (2021). Learning and fusing multiple user interest representations for micro-video and movie recommendations. IEEE Trans Multimedia, 23, 484–496.
9. Aditya, G. M., Hoode, A., Rai, K. A., Biradar, G., Kumarа, M. A., Kumar, M. V., Prashanth, B. S., Sneha, H. R, Shivadarshan, S. L. (2018). Machine learning based platform and recommendation system for food ordering services within premises.
10. Naik, P. A. (2017). Intelligent food recommendation system using machine learning. Nutrition, 5 (8).
11. Xiangnan, He, Lizi, Liao, Hanwang, Zhang, Liqiang, Nie, Xia, Hu and Tat-Seng, Chua. (2017). Neural collaborative filtering. WWW, 173–182.
12. Agarap, Abien Fred. (2018). Deep Learning using Rectified Linear Units (ReLU). ArXiv abs/1803.08375 (2018).
13. Oh, Y., Choi, A., Woo, W. (2010). U-babsang: A context-aware food recommendation system. Journal of Supercomputing, 54 (1), 61-81.
14. Gao, X., Feng, F., Huang, H., Mao, X.-L., Lan, T., Chi, Z. (2022). Food recommendation with graph convolutional network. Information Sciences, 584, 170–183.
15. Dubey, Shiv Ram et al. (2021). Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92–108.
16. Ke, G., Du, H. L., Chen, Y. C. (2021). Cross-platform dynamic goods recommendation system based on reinforcement learning and social networks. Appl Soft Computing, 104, 107213.