Впровадження технології цифрових двійників для робототехніки
1. Grieves, M. (2014). Digital twin: manufacturing excellence through virtual factory replication. White paper, 1–7.
2. Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L. and Nee, A. (2021). Enabling technologies and tools for Digital Twin. Journal of Manufacturing Systems, 58, 3–21.
3. Hassan, M., Svadling, M., Björsell, N. (2022). Experience from implementing digital twins for maintenance in industrial processes.
4. Siciliano, B. & Khatib, O. (Eds.). (2016). Springer Handbook of Robotics. Springer International Publishing.
5. Stallings, W. (2007). DATA AND COMPUTER COMMUNICATIONS, 8th edition.
6. Schroeder, G. N., Steinmetz, C., Pereira, C. E., et al. (2016). Digital twin data modeling with automation and a communication methodology for data exchange. IFACPapersOnLine, 49 (30), 12–7.
7. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol., 94, 3563–3576.
8. Wang, T., Li, J., Kong, Z., Liu, X., Snoussi, H., Lv, H. (2021). Digital twin improved via visual question answering for vision-language interactive mode in human-machine collaboration. J. Manuf. Syst., 58, 261–269.
9. Ascone, C. & Vanderhaegen, F. (2022). Holistic framework for digital twins of human-machine systems. IFAC-PapersOnLine, 55(29), 67-72.
10. Delbrügger, T., Meißner, M., Wirtz, A., Biermann, D., Myrzik, J., Rossmann, J., Wiederkehr, P. (2019). Multi-level simulation concept for multidisciplinary analysis and optimization of production systems. Int. J. Adv. Manuf. Technol. 2019, 103, 3993–4012.
11. Wang, X., Liang, C.J., Menassa, C., Kamat, V. (2020). Real-Time Process-Level Digital Twin for Collaborative Human-Robot Construction Work. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC), Kitakyushu, Japan, 28 October 2020.
12. Bilberg, A., Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Ann., 68, 499–502.
13. Malik, A. A., Brem, A. (2021). Digital twins for collaborative robots: A case study in human-robot interaction. Robot. Comput.-Integr. Manuf., 68, 102092.
14. Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K. D. (2015). About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 48 (3), 567–572.
15. Myronova, N. O., Shaptala, S. V. (2022). Study of the use of digital twins technology for the implementation of simulation of a rescuer. Modern problems and achievements in the field of radio engineering, telecommunications and information technology: XI International scientific and practical conference, 12-14 December 2022: abstracts / Edited by D. M. Pisa. Electronic data. Zaporizhzhia: National University of Zaporizhzhia Polytechnic, 2022. pp. 87–89. (in Ukrainian)
1. Grieves, M. (2014). Digital twin: manufacturing excellence through virtual factory replication. White paper, 1–7.
2. Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L. and Nee, A. (2021). Enabling technologies and tools for Digital Twin. Journal of Manufacturing Systems, 58, 3–21.
3. Hassan, M., Svadling, M., Björsell, N. (2022). Experience from implementing digital twins for maintenance in industrial processes.
4. Siciliano, B. & Khatib, O. (Eds.). (2016). Springer Handbook of Robotics. Springer International Publishing.
5. Stallings, W. (2007). DATA AND COMPUTER COMMUNICATIONS, 8th edition.
6. Schroeder, G. N., Steinmetz, C., Pereira, C. E., et al. (2016). Digital twin data modeling with automation and a communication methodology for data exchange. IFACPapersOnLine, 49 (30), 12–7.
7. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol., 94, 3563–3576.
8. Wang, T., Li, J., Kong, Z., Liu, X., Snoussi, H., Lv, H. (2021). Digital twin improved via visual question answering for vision-language interactive mode in human-machine collaboration. J. Manuf. Syst., 58, 261–269.
9. Ascone, C. & Vanderhaegen, F. (2022). Holistic framework for digital twins of human-machine systems. IFAC-PapersOnLine, 55(29), 67-72.
10. Delbrügger, T., Meißner, M., Wirtz, A., Biermann, D., Myrzik, J., Rossmann, J., Wiederkehr, P. (2019). Multi-level simulation concept for multidisciplinary analysis and optimization of production systems. Int. J. Adv. Manuf. Technol. 2019, 103, 3993–4012.
11. Wang, X., Liang, C.J., Menassa, C., Kamat, V. (2020). Real-Time Process-Level Digital Twin for Collaborative Human-Robot Construction Work. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC), Kitakyushu, Japan, 28 October 2020.
12. Bilberg, A., Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Ann., 68, 499–502.
13. Malik, A. A., Brem, A. (2021). Digital twins for collaborative robots: A case study in human-robot interaction. Robot. Comput.-Integr. Manuf., 68, 102092.
14. Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K. D. (2015). About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 48 (3), 567–572.
15. Myronova, N. O., Shaptala, S. V. (2022). Study of the use of digital twins technology for the implementation of simulation of a rescuer. Modern problems and achievements in the field of radio engineering, telecommunications and information technology: XI International scientific and practical conference, 12-14 December 2022: abstracts / Edited by D. M. Pisa. Electronic data. Zaporizhzhia: National University of Zaporizhzhia Polytechnic, 2022. pp. 87–89. (in Ukrainian)