Взаємодія людина – комп’ютер у середовищі віртуальної реальності для навчальних та ділових цілей

Заголовок (англійською): 
Human-computer interaction in virtual reality environments for educational and business purposes
Автор(и): 
Лі Tao
Автор(и) (англ): 
Li, Tao
Ключові слова (укр): 
віртуальна реальність (VR); взаємодія людина – комп’ютер (HCI); інтерфейс користувача (UI); досвід користувача (UX)
Ключові слова (англ): 
Virtual Reality (VR); Human-Computer Interaction (HCI); User Interface (UI); User Experience (UX)
Анотація (укр): 
Розглянуто інтеграцію взаємодії людини з комп’ютером (HCI) у середовищі віртуальної реальності (VR) з акцентом на його застосування в освітніх і бізнес-сферах. Він досліджує трансформаційний потенціал VR у покращенні дизайну інтерфейсу користувача, оптимізації взаємодії з користувачем та інтеграції передових технологій, таких як обробка природної мови та розпізнавання жестів. Дослідження підкреслює ефективність VR у покращенні результатів навчання та операційної ефективності, демонструючи значний прогрес у захоплюючій та інтуїтивно зрозумілій взаємодії у віртуальних середовищах. Дослідження підкреслює критичну роль дизайну, орієнтованого на користувача, у системах віртуальної реальності і вплив інтеграції технологій обробки природної мови і розпізнавання жестів у створенні більш природної та інтуїтивно зрозумілої взаємодії користувача. Завдяки всебічному аналізу і тематичним дослідженням у статті представлено останні розробки в технології VR та її застосування, запропоновано розуміння майбутнього захоплюючого цифрового середовища в освіті та бізнес-секторах.
Анотація (англ): 
This paper examines the integration of Human-Computer Interaction (HCI) in Virtual Reality (VR) environments, with a focus on its application in educational and business domains. It explores the transformative potential of VR in enhancing user interface design, optimizing user experience, and integrating advanced technologies like natural language processing and gesture recognition. The research highlights VR's efficacy in improving learning outcomes and operational efficiencies, demonstrating significant advancements in immersive and intuitive interaction within virtual settings. The study underscores the critical role of user-centered design in VR systems and the impact of integrating natural language processing and gesture recognition technologies in creating more natural and intuitive user interactions. Through comprehensive analysis and case studies, the paper presents the latest developments in VR technology and its application, offering insights into the future of immersive digital environments in education and business sectors.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Управління розвитком складних систем, номер 57, 2024
Назва журналу, номер, рік випуску (англ): 
Management of Development of Complex Systems, number 57, 2024
Мова статті: 
English
Формат документа: 
application/pdf
Документ: 
Дата публікації: 
22 Апрель 2024
Номер збірника: 
Розділ: 
ІНФОРМАТИЗАЦІЯ ВИЩОЇ ОСВІТИ
Університет автора: 
Київський національний університет будівництва і архітектури, Київ
Литература: 
  1. Argelaguet, F., Ducoffe, M., Lécuyer, A., & Gribonval, R. (2017). Spatial and rotation invariant 3D gesture recognition based on sparse representation. 2017 IEEE Symposium on 3D User Interfaces (3DUI), 158–167. DOI: https://doi.org/10.1109/3DUI.2017.7893333.
  2. Bhardwaj, L. (2023). Retail Optimization. International Journal for Research in Applied Science and Engineering Technology. 11(11), 2488–2494. DOI: https://doi.org/10.22214/ijraset.2023.57068.
  3. Chen, Z., & Zhong, J. (2024). The Logic and Mechanism of VR Marketing: Market Shaping in the Perspective of Virtual Reality. Lecture Notes in Education Psychology and Public Media. 41, 16–22. DOI: https://doi.org/10.54254/2753-7048%2F41%2F20240645.
  4. Chu, Z., Wang, J., Jiang, X., Liu, C., & Li, L. (2022). MIND-VR: A Utility Approach of Human-Computer Interaction in Virtual Space based on Autonomous Consciousness. 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI), 134–138. DOI: https://doi.org/10.1109/VRHCIAI57205.2022.00030.
  5. Dolhopolov, S., Honcharenko, T., Dolhopolova, S.A., Riabchun, O., Delembovskyi, M., & Omelianenko, O. (2022). Use of Artificial Intelligence Systems for Determining the Career Guidance of Future University Student. 2022 International Conference on Smart Information Systems and Technologies (SIST), 1–6. DOI: https://doi.org/10.1109/SIST54437.2022.9945752.
  6. Hudák, M., Sobota, B., & Korečko, Š. (2018). Gesture Control for Cognitive Training Based on VR Technologies. 2018 16th International Conference on Emerging eLearning Technologies and Applications (ICETA), 209–214. DOI: https://doi.org/10.1109/ICETA.2018.8572028.
  7. Liu, Y. (2023). Design of human-computer interaction system based on virtual reality and its application in the dissemination of study lodge culture. 2023 4th International Conference on Intelligent Design (ICID), 251–256. DOI: https://doi.org/10.1109/ICID60307.2023.10396826.
  8. Ryzhakova, G., Malykhina, O., Pokolenko, V., Rubtsova, O., Homenko, O., Nesterenko, I., & Honcharenko, T. (2022). Construction Project Management with Digital Twin Information System. International Journal of Emerging Technology and Advanced Engineering. 12(10), 19–28. DOI: https://doi.org/10.46338/ijetae1022_03.
  9. Sabbella, S. R., Kaszuba, S., Leotta, F., & Nardi, D. (2023). Virtual Reality Applications for Enhancing Human-Robot Interaction: A Gesture Recognition Perspective. Proceedings of the 23rd ACM International Conference on Intelligent Virtual Agents. 58, 1–4. DOI: https://doi.org/10.1145/3570945.3607333.
  10. Schioppo, J., Meyer, Z., Fabiano, D., & Canavan, S.J. (2019). Sign Language Recognition: Learning American Sign Language in a Virtual Environment. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. LBW1422, 1–6. DOI: https://doi.org/10.1145/3290607.3313025.
  11. Shao, X., Wei, X., & Liu, S. (2019). Research On Aircraft Virtual Assembly Technology Based on Gesture Recognition. 2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 147–150. DOI: https://doi.org/10.1109/iccasit48058.2019.8973210.
  12. Shen, S. (2023). Application and Implementation Methods of VR Technology in Higher Education Mechanical Manufacturing Programs. 2023 International Conference on Educational Knowledge and Informatization (EKI), 48–51. DOI: https://doi.org/10.1109/eki61071.2023.00018.
  13. Simmons, S., Clark, K., Tavakkoli, A., & Loffredo, D. (2018). Sensory Fusion and Intent Recognition for Accurate Gesture Recognition in Virtual Environments. International Symposium on Visual Computing. 11241, 237–248. DOI: https://doi.org/10.1007/978-3-030-03801-4_22.
  14. Smagur, A., & Nowak, K.E. (2017). User interface in interactive virtual environment based on real location. Acta Innovations, 25, 29–37.
  15. Tang, J., Gong, M., Jiang, S., Dong, Y., & Gao, T. (2024). Multimodal human-computer interaction for virtual reality. Applied and Computational Engineering. 42, 201–207. DOI: https://doi.org/10.54254/2755-2721/42/20230778.
  16. Tao, L. (2023). Evaluating the Effectiveness of VR Simulations in Business Process Formation. Management of Development of Complex Systems. 56, 97–104. DOI: https://doi.org/10.32347/2412-9933.2023.56.97-104.
  17. Vaitkevičius, A., Taroza, M., Blažauskas, T., Damaševičius, R., Maskeliūnas, R., & Woźniak, M. (2019). Recognition of American Sign Language Gestures in a Virtual Reality Using Leap Motion. Applied Sciences. 9(3), 1–16. DOI: https://doi.org/10.3390/APP9030445.
  18. Yan, Y., Chen, M., & Cao, X. (2018). Research on 3D gesture recognition in virtual maintenance. International Conference on Critical Infrastructure Protection, 58–61. DOI: https://doi.org/10.1145/3290420.3290423.
  19. Yang, T., White, M., Lipson-Smith, R., Shannon, M.M., & Latifi, M. (2024). Design Decision Support for Healthcare Architecture: A VR-Integrated Approach for Measuring User Perception. Buildings. 14(3), 1–23. DOI: https://doi.org/10.3390/buildings14030797.
  20. Zhang, F. (2020). Human–Computer Interactive Gesture Feature Capture and Recognition in Virtual Reality. Ergonomics in Design: The Quarterly of Human Factors Applications. 29(2), 19–25. DOI: https://doi.org/10.1177/1064804620924133.

 

References: 
  1. Argelaguet, F., Ducoffe, M., Lécuyer, A., & Gribonval, R. (2017). Spatial and rotation invariant 3D gesture recognition based on sparse representation. 2017 IEEE Symposium on 3D User Interfaces (3DUI), 158–167. DOI: https://doi.org/10.1109/3DUI.2017.7893333.
  2. Bhardwaj, L. (2023). Retail Optimization. International Journal for Research in Applied Science and Engineering Technology. 11(11), 2488–2494. DOI: https://doi.org/10.22214/ijraset.2023.57068.
  3. Chen, Z., & Zhong, J. (2024). The Logic and Mechanism of VR Marketing: Market Shaping in the Perspective of Virtual Reality. Lecture Notes in Education Psychology and Public Media. 41, 16–22. DOI: https://doi.org/10.54254/2753-7048%2F41%2F20240645.
  4. Chu, Z., Wang, J., Jiang, X., Liu, C., & Li, L. (2022). MIND-VR: A Utility Approach of Human-Computer Interaction in Virtual Space based on Autonomous Consciousness. 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI), 134–138. DOI: https://doi.org/10.1109/VRHCIAI57205.2022.00030.
  5. Dolhopolov, S., Honcharenko, T., Dolhopolova, S.A., Riabchun, O., Delembovskyi, M., & Omelianenko, O. (2022). Use of Artificial Intelligence Systems for Determining the Career Guidance of Future University Student. 2022 International Conference on Smart Information Systems and Technologies (SIST), 1–6. DOI: https://doi.org/10.1109/SIST54437.2022.9945752.
  6. Hudák, M., Sobota, B., & Korečko, Š. (2018). Gesture Control for Cognitive Training Based on VR Technologies. 2018 16th International Conference on Emerging eLearning Technologies and Applications (ICETA), 209–214. DOI: https://doi.org/10.1109/ICETA.2018.8572028.
  7. Liu, Y. (2023). Design of human-computer interaction system based on virtual reality and its application in the dissemination of study lodge culture. 2023 4th International Conference on Intelligent Design (ICID), 251–256. DOI: https://doi.org/10.1109/ICID60307.2023.10396826.
  8. Ryzhakova, G., Malykhina, O., Pokolenko, V., Rubtsova, O., Homenko, O., Nesterenko, I., & Honcharenko, T. (2022). Construction Project Management with Digital Twin Information System. International Journal of Emerging Technology and Advanced Engineering. 12(10), 19–28. DOI: https://doi.org/10.46338/ijetae1022_03.
  9. Sabbella, S. R., Kaszuba, S., Leotta, F., & Nardi, D. (2023). Virtual Reality Applications for Enhancing Human-Robot Interaction: A Gesture Recognition Perspective. Proceedings of the 23rd ACM International Conference on Intelligent Virtual Agents. 58, 1–4. DOI: https://doi.org/10.1145/3570945.3607333.
  10. Schioppo, J., Meyer, Z., Fabiano, D., & Canavan, S.J. (2019). Sign Language Recognition: Learning American Sign Language in a Virtual Environment. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. LBW1422, 1–6. DOI: https://doi.org/10.1145/3290607.3313025.
  11. Shao, X., Wei, X., & Liu, S. (2019). Research On Aircraft Virtual Assembly Technology Based on Gesture Recognition. 2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 147–150. DOI: https://doi.org/10.1109/iccasit48058.2019.8973210.
  12. Shen, S. (2023). Application and Implementation Methods of VR Technology in Higher Education Mechanical Manufacturing Programs. 2023 International Conference on Educational Knowledge and Informatization (EKI), 48–51. DOI: https://doi.org/10.1109/eki61071.2023.00018.
  13. Simmons, S., Clark, K., Tavakkoli, A., & Loffredo, D. (2018). Sensory Fusion and Intent Recognition for Accurate Gesture Recognition in Virtual Environments. International Symposium on Visual Computing. 11241, 237–248. DOI: https://doi.org/10.1007/978-3-030-03801-4_22.
  14. Smagur, A., & Nowak, K.E. (2017). User interface in interactive virtual environment based on real location. Acta Innovations, 25, 29–37.
  15. Tang, J., Gong, M., Jiang, S., Dong, Y., & Gao, T. (2024). Multimodal human-computer interaction for virtual reality. Applied and Computational Engineering. 42, 201–207. DOI: https://doi.org/10.54254/2755-2721/42/20230778.
  16. Tao, L. (2023). Evaluating the Effectiveness of VR Simulations in Business Process Formation. Management of Development of Complex Systems. 56, 97–104. DOI: https://doi.org/10.32347/2412-9933.2023.56.97-104.
  17. Vaitkevičius, A., Taroza, M., Blažauskas, T., Damaševičius, R., Maskeliūnas, R., & Woźniak, M. (2019). Recognition of American Sign Language Gestures in a Virtual Reality Using Leap Motion. Applied Sciences. 9(3), 1–16. DOI: https://doi.org/10.3390/APP9030445.
  18. Yan, Y., Chen, M., & Cao, X. (2018). Research on 3D gesture recognition in virtual maintenance. International Conference on Critical Infrastructure Protection, 58–61. DOI: https://doi.org/10.1145/3290420.3290423.
  19. Yang, T., White, M., Lipson-Smith, R., Shannon, M.M., & Latifi, M. (2024). Design Decision Support for Healthcare Architecture: A VR-Integrated Approach for Measuring User Perception. Buildings. 14(3), 1–23. DOI: https://doi.org/10.3390/buildings14030797.
  20. Zhang, F. (2020). Human–Computer Interactive Gesture Feature Capture and Recognition in Virtual Reality. Ergonomics in Design: The Quarterly of Human Factors Applications. 29(2), 19–25. DOI: https://doi.org/10.1177/1064804620924133.