Аналіз задач інтелектуальної системи проведення конкурсів проєктів
1. Schalkoff, R. J. (2009). Intelligent Systems: Principles, Paradigms, and Pragmatics: Principles, Paradigms, and Pragmatics. Jones & Bartlett Publishers.
2. Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ... & Pan, Y. (2023). Intelligent computing: the latest advances, challenges, and future. Intelligent Computing, 2, 0006. https://doi.org/10.34133/icomputing.0006.
3. Fedusenko, O., Domanetska, I., Lyashchenko, T. & Semeniuk, D. (2020). Training and gaming system for development of logic with intelligent interface. Management of Development of Complex Systems, 41, 133-140, dx.doi.org\10.32347/2412-9933.2020.41.133-140.
4. Yankovy, I., Ilarionov, O., Krasovska, H. & Domanetska, I. (2021). Classifier of liver diseases according to textural statistics of ultrasound investigation and convolutional neural network. In CEUR Workshop Proceedings (pp. 60–69).
5. Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S. & Kepner, J. (2022, September). AI and ML accelerator survey and trends. In 2022 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-10). IEEE.
6. Ransbotham, S., Khodabandeh, S., Kiron, D., Candelon, F., Chu, M., LaFountain, B., … & Sarnoff, D. (2020). Expanding AI’s Impact With Organizational Learning. URL: https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning/
7. Kim, Y. S., Ryoo, Y. J., Jang, M. S. & Bae, Y. C. (Eds.). (2014). Advanced Intelligent Systems (Vol. 268). Springer. https://doi.org/10.1007/978-3-319-05500-8.
8. Dong, M., Bonnefon, J. F. & Rahwan, I. (2024). Toward human-centered AI management: Methodological challenges and future directions. Technovation, 131, 102953. https://doi.org/10.1016/j.technovation.2024.102953.
9. Azofeifa, J. D., Noguez, J., Ruiz, S., Molina-Espinosa, J. M., Magana, A. J. & Benes, B. (2022). Systematic Review of Multimodal Human-Computer Interaction. Informatics 2022, 9, 13. https://doi.org/10.3390/informatics9010013
10. Jarrahi, M. H., Askay, D., Eshraghi, A. & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87-99. https://doi.org/10.1016/j.bushor.2022.03.002.
11. Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., ... & Eckersley, P. (2020, January). Explainable machine learning in deployment. In Proceedings of the 2020 conference on fairness, accountability, and transparency (pp. 648-657). https://doi.org/10.1145/3351095.3375624.
12. Zirar, A., Ali, S. I. & Islam, N. (2023). Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda. Technovation, 124, 102747. https://doi.org/10.1016/j.technovation.2023.102747.
13. Hnatiienko, H., Snytyuk, V., Tmienova, N., Zatonatskiy, D. & Zhylinska, O. (2022). Mathematical Support of the Task of Determining the Strategic Directions of Development and Priorities of the Organization. In IT&I (pp. 169-184).
14. Hnatiienko, H., Hnatiienko, O., Tmienova, N. & Snytyuk, V. (2023). Mathematical Model of Management of the Corporate Culture of the Organizational System. CEUR Workshop Proceedings, 3624, 250–265.
15. Hnatiienko, H., Snytyuk, V., Tmienova, N. & Voloshyn, O. (2021). Application of expert decision-making technologies for fair evaluation in testing problems. CEUR Workshop Proceedings, 2859, 46 – 60.
16. Voloshin, A. F., Gnatienko, G. N. & Drobot, E. V. (2003). A Method of Indirect Determination of Intervals of Weight Coefficients of Parameters for Metricized Relations Between Objects. Journal of Automation and Information Sciences, 35, (1-4).
17. Holzinger, A., Langs, G., Denk, H., Zatloukal, K. & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312.
18. Islam, M. R., Ahmed, M. U., Barua, S. & Begum, S. (2022). A systematic review of explainable artificial intelligence in terms of different application domains and tasks. Applied Sciences, 12(3), 1353. https://doi.org/10.3390/app12031353.
19. Bilan, S., Hnatiienko, V., Ilarionov, O. & Krasovska, H. (2023). Technology of Selection and Recognition of Information Objects on Images of the Earth's Surface Based on Multi-Projection Analysis. In IntSol (pp. 23-32).
20. Ikenna, O. (2016). Project team building by the criterion of fulfillment (happiness): main problems and conceptual baselines. Upravlinnia proektamy ta rozvytok vyrobnytstva, 2(58), 110-124. http://pmdp.org.ua/index.php/en/2016/2-58-2016?id=1467.
21. Rach, V., Osakwe, I., Medvedieva, O., Rossoshanska, O. & Borulko, N. (2019). Method for configuring the composition of a project team based on the criteria of subjective well-being. . Eastern-European Journal of Enterprise Technologies, 2 (3),
48–59. URL: http://journals.uran.ua/eejet/article/view/160651.
22. Dolgikh, S. & Mulesa, O. (2021). Collaborative Human-AI Decision-Making Systems. CEUR Workshop Proceedings, 16130073.
23. Mulesa, O., Povkhan, I., Radivilova, T. & Baranovskyi, O. (2021). Devising a method for constructing the optimal model of time series forecasting based on the principles of competition. Eastern-European Journal of Enterprise Technologies, 5 (4), 113. https://doi.org/10.15587/1729-4061.2021.240847.
24. Hnatiienko, H. & Suprun, O. (2018, November). Fuzzy Set Objects Clustering Method Using Evolution Technologies. In ITS (pp. 129–138).
25. Bimonte, S. (2016). Current approaches, challenges, and perspectives on spatial OLAP for agri-environmental analysis. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 7 (4), 32–49.
26. Queiroz-Sousa, P. O. & Salgado, A. C. (2019). A review on OLAP technologies applied to information networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 14(1), 1-25. http://doi.org/10.1145/3370912.
27. Martens, D., Baesens, B. & Fawcett, T. (2011). Editorial survey: swarm intelligence for data mining. Machine Learning, 82, 1–42.
28. Reddy, G. S. & Chittineni, S. (2021). Entropy based C4. 5-SHO algorithm with information gain optimization in data mining. PeerJ Computer Science, 7, e424.
29. Stancu, M. S. & Duţescu, A. (2021). The impact of the Artificial Intelligence on the accounting profession, a literature’s assessment. In Proceedings of the International Conference on Business Excellence (Vol. 15, No. 1, pp. 749-758). Sciendo.
30. Soori, M., Arezoo, B. & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70.
- Schalkoff, R. J. (2009). Intelligent Systems: Principles, Paradigms, and Pragmatics: Principles, Paradigms, and Pragmatics. Jones & Bartlett Publishers.
- Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ... & Pan, Y. (2023). Intelligent computing: the latest advances, challenges, and future. Intelligent Computing, 2, 0006. https://doi.org/10.34133/icomputing.0006.
- Fedusenko, O., Domanetska, I., Lyashchenko, T. & Semeniuk, D. (2020). Training and gaming system for development of logic with intelligent interface. Management of Development of Complex Systems, 41, 133-140, dx.doi.org\10.32347/2412-9933.2020.41.133-140.
- Yankovy, I., Ilarionov, O., Krasovska, H. & Domanetska, I. (2021). Classifier of liver diseases according to textural statistics of ultrasound investigation and convolutional neural network. In CEUR Workshop Proceedings (pp. 60–69).
- Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S. & Kepner, J. (2022, September). AI and ML accelerator survey and trends. In 2022 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-10). IEEE.
- Ransbotham, S., Khodabandeh, S., Kiron, D., Candelon, F., Chu, M., LaFountain, B., … & Sarnoff, D. (2020). Expanding AI’s Impact With Organizational Learning. URL: https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning/
- Kim, Y. S., Ryoo, Y. J., Jang, M. S. & Bae, Y. C. (Eds.). (2014). Advanced Intelligent Systems (Vol. 268). Springer. https://doi.org/10.1007/978-3-319-05500-8.
- Dong, M., Bonnefon, J. F. & Rahwan, I. (2024). Toward human-centered AI management: Methodological challenges and future directions. Technovation, 131, 102953. https://doi.org/10.1016/j.technovation.2024.102953.
- Azofeifa, J. D., Noguez, J., Ruiz, S., Molina-Espinosa, J. M., Magana, A. J. & Benes, B. (2022). Systematic Review of Multimodal Human-Computer Interaction. Informatics 2022, 9, 13. https://doi.org/10.3390/informatics9010013
- Jarrahi, M. H., Askay, D., Eshraghi, A. & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87-99. https://doi.org/10.1016/j.bushor.2022.03.002.
- Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., ... & Eckersley, P. (2020, January). Explainable machine learning in deployment. In Proceedings of the 2020 conference on fairness, accountability, and transparency (pp. 648-657). https://doi.org/10.1145/3351095.3375624.
- Zirar, A., Ali, S. I. & Islam, N. (2023). Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda. Technovation, 124, 102747. https://doi.org/10.1016/j.technovation.2023.102747.
- Hnatiienko, H., Snytyuk, V., Tmienova, N., Zatonatskiy, D. & Zhylinska, O. (2022). Mathematical Support of the Task of Determining the Strategic Directions of Development and Priorities of the Organization. In IT&I (pp. 169-184).
- Hnatiienko, H., Hnatiienko, O., Tmienova, N. & Snytyuk, V. (2023). Mathematical Model of Management of the Corporate Culture of the Organizational System. CEUR Workshop Proceedings, 3624, 250–265.
- Hnatiienko, H., Snytyuk, V., Tmienova, N. & Voloshyn, O. (2021). Application of expert decision-making technologies for fair evaluation in testing problems. CEUR Workshop Proceedings, 2859, 46 – 60.
- Voloshin, A. F., Gnatienko, G. N. & Drobot, E. V. (2003). A Method of Indirect Determination of Intervals of Weight Coefficients of Parameters for Metricized Relations Between Objects. Journal of Automation and Information Sciences, 35, (1-4).
- Holzinger, A., Langs, G., Denk, H., Zatloukal, K. & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312.
- Islam, M. R., Ahmed, M. U., Barua, S. & Begum, S. (2022). A systematic review of explainable artificial intelligence in terms of different application domains and tasks. Applied Sciences, 12(3), 1353. https://doi.org/10.3390/app12031353.
- Bilan, S., Hnatiienko, V., Ilarionov, O. & Krasovska, H. (2023). Technology of Selection and Recognition of Information Objects on Images of the Earth's Surface Based on Multi-Projection Analysis. In IntSol (pp. 23-32).
- Ikenna, O. (2016). Project team building by the criterion of fulfillment (happiness): main problems and conceptual baselines. Upravlinnia proektamy ta rozvytok vyrobnytstva, 2(58), 110-124. http://pmdp.org.ua/index.php/en/2016/2-58-2016?id=1467.
- Rach, V., Osakwe, I., Medvedieva, O., Rossoshanska, O. & Borulko, N. (2019). Method for configuring the composition of a project team based on the criteria of subjective well-being. . Eastern-European Journal of Enterprise Technologies, 2 (3),
48–59. URL: http://journals.uran.ua/eejet/article/view/160651. - Dolgikh, S. & Mulesa, O. (2021). Collaborative Human-AI Decision-Making Systems. CEUR Workshop Proceedings, 16130073.
- Mulesa, O., Povkhan, I., Radivilova, T. & Baranovskyi, O. (2021). Devising a method for constructing the optimal model of time series forecasting based on the principles of competition. Eastern-European Journal of Enterprise Technologies, 5 (4), 113. https://doi.org/10.15587/1729-4061.2021.240847.
- Hnatiienko, H. & Suprun, O. (2018, November). Fuzzy Set Objects Clustering Method Using Evolution Technologies. In ITS (pp. 129–138).
- Bimonte, S. (2016). Current approaches, challenges, and perspectives on spatial OLAP for agri-environmental analysis. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 7 (4), 32–49.
- Queiroz-Sousa, P. O. & Salgado, A. C. (2019). A review on OLAP technologies applied to information networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 14(1), 1-25. http://doi.org/10.1145/3370912.
- Martens, D., Baesens, B. & Fawcett, T. (2011). Editorial survey: swarm intelligence for data mining. Machine Learning, 82, 1–42.
- Reddy, G. S. & Chittineni, S. (2021). Entropy based C4. 5-SHO algorithm with information gain optimization in data mining. PeerJ Computer Science, 7, e424.
- Stancu, M. S. & Duţescu, A. (2021). The impact of the Artificial Intelligence on the accounting profession, a literature’s assessment. In Proceedings of the International Conference on Business Excellence (Vol. 15, No. 1, pp. 749-758). Sciendo.
- Soori, M., Arezoo, B. & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70.