Оптимізація руху транспорту в простій мережі за допомогою глибокого навчання з підкріпленням
1. Van der Pol E. Deep reinforcement learning for coordination in traffic light control. 2016. URL: https://www.researchgate.net/publication/315810688_Deep_Reinforcement_Learning_for_Coordination_in_Traffic_Light_Control_MSc_thesis.
2. Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. IEEE. 1998. Vol. 86, № 11. С. 2278–2324. DOI: https://doi.org/10.1109/5.726791.
3. LA P., Bhatnagar S. Reinforcement Learning With Function Approximation for Traffic Signal Control. IEEE Transactions on Intelligent Transportation Systems. 2011. Vol. 12, № 2. P. 412–421. DOI: https://doi.org/10.1109/TITS.2010.2091408.
4. Acharya S., Dash K. K., Chaini R. Fuzzy Logic: An Advanced Approach to Traffic Control. Learning and Analytics in Intelligent Systems. 2020. DOI: https://dx.doi.org/10.4018/ijide.2014010103.
5. Daneshfar F., Akhlaghian F., Mansoori F. Adaptive and cooperative multi-agent fuzzy system architecture. 14th International CSI Computer Conference. 2009. P. 30–34. DOI: https://doi.org/10.1109/CSICC.2009.5349439.
6. Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., Riedmiller M. Playing Atari with Deep Reinforcement Learning. 2013. URL: https://doi.org/10.48550/arXiv.1312.5602
7. Tesauro G. Temporal difference learning and td-gammon. Communications of the ACM. 1995. Vol. 38, № 3. P. 58–68. DOI: https://doi.org/10.1145/203330.203343.
8. Pollack J. B., Blair A. D. Why did td-gammon work? Advances in Neural Information Processing Systems. 1997.
С. 10–16. DOI: https://doi.org/10.1145/203330.203343.
9. Kingma D., Ba J. Adam: A method for stochastic optimization. 2014. URL: https://arxiv.org/abs/1412.6980.
10. Sutton R., Mcallester D. A., Singh S., Mansour Y. Policy Gradient Methods for Reinforcement Learning with Function Approximation. Adv. Neural Inf. Process. Syst. 12. URL: https://dl.acm.org/doi/10.5555/3009657.3009806.
11. Lillicrap T. P., Hunt J. J., Pritzel A., Heess N., Erez T., Tassa Y., Silver D., Wierstra D. Continuous control with deep reinforcement learning. URL: https://doi.org/10.48550/arXiv.1509.02971.
12. Silver D., Lever G., Heess N., Degris T., Wierstra D., Riedmiller M. Deterministic policy gradient algorithms. 31st International Conference on Machine Learning (ICML-14). 2014. P. 387–395. URL: http://dx.doi.org/10.13140/RG.2.2.16324.71048.
13. Aimsun Next user manual, version 24.0.1. URL: https://docs.aimsun.com/next/24.0.1/.
14. Levytskyi V., Kruk, Lopuha O., Sereda D., Sapaiev V., Matsiievskyi O. Use of Deep Learning Methodologies in Combination with Reinforcement Techniques within Autonomous Mobile Cyber-physical Systems. 2024 IEEE. DOI: https://doi.org/10.1109/SIST61555.2024.10629589.
1. Van der Pol E. Deep reinforcement learning for coordination in traffic light control. 2016. URL: https://www.researchgate.net/publication/315810688_Deep_Reinforcement_Learning_for_Coordination_in_Traffic_Light_Control_MSc_thesis.
2. Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. IEEE. 1998. Vol. 86, № 11. С. 2278–2324. DOI: https://doi.org/10.1109/5.726791.
3. LA P., Bhatnagar S. Reinforcement Learning With Function Approximation for Traffic Signal Control. IEEE Transactions on Intelligent Transportation Systems. 2011. Vol. 12, № 2. P. 412–421. DOI: https://doi.org/10.1109/TITS.2010.2091408.
4. Acharya S., Dash K. K., Chaini R. Fuzzy Logic: An Advanced Approach to Traffic Control. Learning and Analytics in Intelligent Systems. 2020. DOI: https://dx.doi.org/10.4018/ijide.2014010103.
5. Daneshfar F., Akhlaghian F., Mansoori F. Adaptive and cooperative multi-agent fuzzy system architecture. 14th International CSI Computer Conference. 2009. P. 30–34. DOI: https://doi.org/10.1109/CSICC.2009.5349439.
6. Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., Riedmiller M. Playing Atari with Deep Reinforcement Learning. 2013. URL: https://doi.org/10.48550/arXiv.1312.5602
7. Tesauro G. Temporal difference learning and td-gammon. Communications of the ACM. 1995. Vol. 38, № 3. P. 58–68. DOI: https://doi.org/10.1145/203330.203343.
8. Pollack J. B., Blair A. D. Why did td-gammon work? Advances in Neural Information Processing Systems. 1997. С. 10–16. DOI: https://doi.org/10.1145/203330.203343.
9. Kingma D., Ba J. Adam: A method for stochastic optimization. 2014. URL: https://arxiv.org/abs/1412.6980.
10. Sutton R., Mcallester D. A., Singh S., Mansour Y. Policy Gradient Methods for Reinforcement Learning with Function Approximation. Adv. Neural Inf. Process. Syst. 12. URL: https://dl.acm.org/doi/10.5555/3009657.3009806.
11. Lillicrap T. P., Hunt J. J., Pritzel A., Heess N., Erez T., Tassa Y., Silver D., Wierstra D. Continuous control with deep reinforcement learning. URL: https://doi.org/10.48550/arXiv.1509.02971.
12. Silver D., Lever G., Heess N., Degris T., Wierstra D., Riedmiller M. Deterministic policy gradient algorithms. 31st International Conference on Machine Learning (ICML-14). 2014. P. 387–395. URL: http://dx.doi.org/10.13140/RG.2.2.16324.71048.
13. Aimsun Next user manual, version 24.0.1. URL: https://docs.aimsun.com/next/24.0.1/.
14. Levytskyi V., Kruk, Lopuha O., Sereda D., Sapaiev V., Matsiievskyi O. Use of Deep Learning Methodologies in Combination with Reinforcement Techniques within Autonomous Mobile Cyber-physical Systems. 2024 IEEE. DOI: https://doi.org/10.1109/SIST61555.2024.10629589.