Оптимізація моделей машинного навчання для оцінки ризику поширення туберкульозу
1. Batoure Bamana, A., Shafiee Kamalabad, M., & Oberski, D. L. (2024). A systematic literature review of time series methods applied to epidemic prediction. Informatics in Medicine Unlocked, 50, 101571. https://doi.org/10.1016/j.imu.2024.101571.
2. Arisanti, R., Pontoh, R. S., Winarni, S., Nurhasanah, Y., Pertiwi, A. P., & Aini, S. D. N. (2024). Integrating generalized linear mixed models with extreme neural network: Enhancing pulmonary tuberculosis risk modeling in West Java, Indonesia. Communications in Mathematical Biology and Neuroscience, 2024, 85. https://doi.org/10.28919/cmbn/8748.
3. D‘Souza, N. S., Wang, H., Giovannini, A., Foncubierta-Rodriguez, A., Beck, K. L., Boyko, O., & Syeda-Mahmood, T. F. (2024). Fusing modalities by multiplexed graph neural networks for outcome prediction from medical data and beyond. Medical Image Analysis, 93, 103064. https://doi.org/10.1016/j.media.2023.103064.
4. Zhang, F., Zhang, F., Li, L., & Pang, Y. (2024). Clinical utilization of artificial intelligence in predicting therapeutic efficacy in pulmonary tuberculosis. Journal of Infection and Public Health, 17 (4), 632–641. https://doi.org/10.1016/j.jiph.2024.02.012.
5. Sun, C., Fang, R., Salemi, M., Prosperi, M., & Magalis, B. R. (2024). DeepDynaForecast: Phylogenetic-informed graph deep learning for epidemic transmission dynamic prediction. PLoS Computational Biology, 20 (4), e1011351. https://doi.org/10.1371/journal.pcbi.1011351.
6. Yilmaz, Y. (2024). Stacked ensemble modeling for improved tuberculosis treatment outcome prediction in pediatric cases. Concurrency and Computation: Practice and Experience, 36(13), e8089. https://doi.org/10.1002/cpe.8089.
7. Canas, L. S., Dong, T. H. K., Beasley, D., Donovan, J., Cleary, J. O., et al. (2024). Computer-aided prognosis of tuberculous meningitis combining imaging and non-imaging data. Scientific Reports, 14 (1), 17581. https://doi.org/10.1038/s41598-024-68308-8.
8. Abade, A., Porto, L. F., Scholze, A. R., Kuntath, D., Barros, N. D. S., et al. (2024). A comparative analysis of classical and machine learning methods for forecasting TB/HIV co-infection. Scientific Reports, 14 (1), 18991. https://doi.org/10.1038/s41598-024-69580-4.
9. Zhang, Y., Ma, H., Wang, H., Xia, Q., Wu, S., et al. (2024). Forecasting the trend of tuberculosis incidence in Anhui Province based on machine learning optimization algorithm, 2013–2023. BMC Pulmonary Medicine, 24 (1), 536. https://doi.org/10.1186/s12890-024-03296-z.
10. Hamna Mariyam K B, Anuwat Jirawattanapanit, Sayooj Aby Jose, Karuna Mathew. A comprehensive study on tuberculosis prediction models: Integrating machine learning into epidemiological analysis Journal of Theoretical Biology, 597, art. no. 111988, 2025 DOI: 10.1016/j.jtbi.2024.111988.
11. Lane, T. R., Urbina, F., Rank, L., Gerlach, J., Riabova, O., et al. (2022). Machine learning models for Mycobacterium tuberculosis in vitro activity: Prediction and target visualization. Molecular Pharmaceutics, 19 (2), 674–689. https://doi.org/10.1021/acs.molpharmaceut.1c00791.
1. Batoure Bamana A., Shafiee Kamalabad M., Oberski D. L. A systematic literature review of time series methods applied to epidemic prediction Informatics in Medicine Unlocked, 50, art. no. 101571, 2024 DOI: 10.1016/j.imu.2024.101571.
2. Arisanti R., Pontoh R. S., Winarni S., Nurhasanah Y., Pertiwi A. P., Aini S. D. N. Integrating Generalized Linear Mixed Models with Extreme Neural Network: Enhancing Pulmonary Tuberculosis Risk Modeling in West Java, Indonesia Communications in Mathematical Biology and Neuroscience, 2024, art. no. 85, 2024 DOI: 10.28919/cmbn/8748.
3. D‘Souza N. S., Wang H., Giovannini A., Foncubierta-Rodriguez A., Beck K. L., Boyko O., Syeda-Mahmood T. F. Fusing modalities by multiplexed graph neural networks for outcome prediction from medical data and beyond Medical Image Analysis, 93, art. no. 103064, 2024 DOI: 10.1016/j.media.2023.103064.
4. Zhang F., Zhang F., Li L., Pang Y. Clinical utilization of artificial intelligence in predicting therapeutic efficacy in pulmonary tuberculosis Journal of Infection and Public Health, 17 (4), pp. 632-641, 2024 DOI: 10.1016/j.jiph.2024.02.012.
5. Sun C., Fang R., Salemi M., Prosperi M., Magalis B. R. Deep Dyna Forecast: Phylogenetic-informed graph deep learning for epidemic transmission dynamic prediction PLoS Computational Biology, 20 (4), art. no. e1011351, 2024 DOI: 10.1371/journal.pcbi.1011351.
6. Yilmaz Y. Stacked ensemble modeling for improved tuberculosis treatment outcome prediction in pediatric cases Concurrency and Computation: Practice and Experience, 36 (13), art. no. e8089, 2024 DOI: 10.1002/cpe.8089.
7. Canas L. S., Dong T. H. K., Beasley D., Donovan J., Cleary J. O., et al. Computer-aided prognosis of tuberculous meningitis combining imaging and non-imaging data Scientific Reports, 14 (1), art. no. 17581, 2024 DOI: 10.1038/s41598-024-68308-8.
8. Abade A., Porto L. F., Scholze A. R., Kuntath D., Barros N. D. S., et al. A comparative analysis of classical and machine learning methods for forecasting TB/HIV co-infection Scientific Reports, 14 (1), art. no. 18991, 2024 DOI: 10.1038/s41598-024-69580-4.
9. Zhang Y., Ma H., Wang H., Xia Q., Wu S., et al. Forecasting the trend of tuberculosis incidence in Anhui Province based on machine learning optimization algorithm, 2013–2023 BMC Pulmonary Medicine, 24 (1), art. no. 536, 2024 DOI: 10.1186/s12890-024-03296-z.
10. Hamna Mariyam K B, Anuwat Jirawattanapanit, Sayooj Aby Jose, Karuna Mathew. A comprehensive study on tuberculosis prediction models: Integrating machine learning into epidemiological analysis Journal of Theoretical Biology, 597, art. no. 111988, 2025 DOI: 10.1016/j.jtbi.2024.111988.
11. Lane T. R., Urbina F., Rank L., Gerlach J., Riabova O., et al. Machine Learning Models for Mycobacterium tuberculosis in Vitro Activity: Prediction and Target Visualization Molecular Pharmaceutics, 19 (2), pp. 674–689, 2022 DOI: 10.1021/acs.molpharmaceut.1c00791.