Моделі і методи штучного інтелекту в процесі виконання будівельно-технічної експертизи
1. Ukrinform. В Україні цьогоріч зруйновані майже 50 тисяч об’єктів нерухомості та інфраструктури. Укрінформ – актуальні новини України та світу. URL: https://www.ukrinform.ua/rubric-vidbudova/3934324-v-ukraini-cogoric-zrujnovani-majze-50-tisac-obektiv-neruhomosti-ta-infrastrukturi-kuleba.html
2. Пасько, Р. М., Теренчук, С. А. Моделювання інтелектуальної системи підтримки судових будівельно-технічних експертиз. Актуальні питання судової експертизи криміналістики та кримінального процесу: мат. міжн. наук.-практ. конф. (м. Київ, 05.11. 2019). Київ : КНДІСЕ Мінюста України, 2019, С. 429–432.
3. Pasko R., Terenchuk S. The use of neuro-fuzzy models in expert support systems for forensic building-technical expertise. ScienceRise. 2020. Vol. 2. P. 10–18. DOI: https://doi.org/10.21303/2313-8416.2020.001278
4. Командиров О. В., Куліков П. М., Плоский В. О., Єременко Б. М. Застосування штучної нейро-нечіткої мережі Такаги – Сугено – Канга до оцінки технічного стану об’єктів будівництва. Управління розвитком складних систем. 2020. № 42. С. 107 – 112, dx.doi.org\10.32347/2412-9933.2020.42.107-112.
5. ДСТУ 9273:2024. Настанова щодо обстеження будівель і споруд для визначення та оцінювання їхнього технічного стану: [Чинний від 2024-09-01]. Національний стандарт України, Київ, ДП «УкрНДНЦ», 2024, 78 с.
6. Панкевич О. Д., Штовба С. Д. Діагностування тріщин будівельних конструкцій за допомогою нечітких баз знань: монографія. Вінниця: УНІВЕРСУМ-Вінниця, 2005. 108с.
7. Terenchuk S., Pasko R., Buhrov A., Ploskyi V., Panko O., Zapryvoda V. Computerization of the process of reconstruction of damaged or destroyed real estate. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2022. P. 1–6. DOI: 10.1109/KhPIWeek57572.2022.9916470.
8. Volokh B., Bosenko I., Pasko R., Molodid O., Zapryvoda V., Terenchuk S. Modeling the Process of Assessing the Technical Condition of Damaged Real Estate Objects. 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), Astana, Kazakhstan, 4–6 May 2023. DOI: https://doi.org/10.1109/sist58284.2023.10223547
9. Бугров А. А., Волох Б. Ю., Босенко І. В., Теренчук С. А. Система підтримки процесу відновлення об’єктів нерухомості: обробка і збереження даних. Управління розвитком складних систем. Київ, 2024. № 60. С. 136 – 145, dx.doi.org\10.32347/2412-9933.2024.60.136-145.
10. Hong Z., et al. Classification of Building Damage Using a Novel Convolutional Neural Network Based on Post-Disaster Aerial Images. Sensors. 2022. Vol. 22, no. 15. P. 5920. DOI: https://doi.org/10.3390/s22155920.
11. Mangalathu S., et al. Classifying earthquake damage to buildings using machine learning. Earthquake Spectra. 2020. Vol. 36, no. 1. P. 183–208. DOI: https://doi.org/10.1177/8755293019878137.
12. Takhtkeshha N., Mohammadzadeh A., Salehi B. A Rapid Self-Supervised Deep-Learning-Based Method for Post-Earthquake Damage Detection Using UAV Data (Case Study: Sarpol-e Zahab, Iran). Remote Sensing. 2022. Vol. 15, № 1. P. 123. DOI: https://doi.org/10.3390/rs15010123.
13. Xiang L., et al. Applications of multi-agent systems from the perspective of construction management: A literature review. Engineering, Construction and Architectural Management. 2021. Ahead-of-print. DOI: https://doi.org/10.1108/ecam-01-2021-0038.
14. Hu, Y., Wu, L., Li, N., & Zhao, T. Multi-Agent Decision-Making in Construction Engineering and Management: A Systematic Review. Sustainability, Vol. 16. №16, P. 7132. DOI: https://doi.org/10.3390/su16167132.
15. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-Y. LightGBM: a highly efficient gradient boosting decision tree // Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 2017. P. 3149–3157.
16. Categorical Cross-Entropy in Multi-Class Classification – GeeksforGeeks. GeeksforGeeks. URL: https://www.geeksforgeeks.org/categorical-cross-entropy-in-multi-class-classification/.
17. GeeksforGeeks. F1 Score in Machine Learning – GeeksforGeeks. GeeksforGeeks. URL: https://www.geeksforgeeks.org/f1-score-in-machine-learning/.
18. Командиров О. В. Інтелектуальні засоби підтримки процесу оцінки технічного стану об'єктів будівництва.: дис. … канд. тех. наук: 30.04.2021. Київ, 2021, 163 с.
19. Modeling the Process of Assessing the Technical Condition of Damaged Real Estate Objects / B. Volokh et al. 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), Astana, Kazakhstan, 4–6 May 2023. 2023. URL: https://doi.org/10.1109/sist58284.2023.10223547.
1. Ukrinform. (2024). Almost 50,000 real estate and infrastructure facilities have been destroyed in Ukraine this year. Ukrinform – Current News of Ukraine and the World. URL: https://www.ukrinform.ua/rubric-vidbudova/3934324-v-ukraini-cogoric-zrujnovani-majze-50-tisac-obektiv-neruhomosti-ta-infrastrukturi-kuleba.html.
2. Pasko, R. M., & Terenchuk, S. A. (2019). Modeling of an intelligent support system for forensic building-technical expertise. Current Issues of Forensic Expertise, Criminalistics and Criminal Procedure: Proceedings of the International Scientific and Practical Conference (Kyiv, November 5, 2019). Kyiv : KNDISE of the Ministry of Justice of Ukraine, 429–432.
3. Pasko, R., & Terenchuk, S. (2020). The use of neuro-fuzzy models in expert support systems for forensic building-technical expertise. ScienceRise, 2, 10–18. URL: https://doi.org/10.21303/2313-8416.2020.001278.
4. Komandirov, O. V., Kulikov, P. M., Ploskyi, V. O., & Yeremenko, B. M. (2020). Application of the artificial Takagi-Sugeno-Kang neuro-fuzzy network for assessing the technical condition of construction objects. Management of Complex Systems Development, 42, 107–112. URL: https://doi.org/10.32347/2412-9933.2020.42.107-112.
5. National Standard of Ukraine. (2024). Guidelines for the inspection of buildings and structures for determining and assessing their technical condition (DSTU 9273:2024). Kyiv: DP "UkrNDNC".
6. Pankevych, O. D., & Shtovba, S. D. (2005). Diagnosis of cracks in building structures using fuzzy knowledge bases. Monograph. Universum-Vinnytsia.
7. Terenchuk, S., Pasko, R., Buhrov, A., Ploskyi, V., Panko, O., & Zapryvoda, V. (2022). Computerization of the process of reconstruction of damaged or destroyed real estate. Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), 1–6. 10.1109/KhPIWeek57572.2022.9916470
8. Volokh, B., Bosenko, I., Pasko, R., Molodid, O., Zapryvoda, V., & Terenchuk, S. (2023). Modeling the process of assessing the technical condition of damaged real estate objects. Proceedings of the 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), 4–6 May, Astana, Kazakhstan. URL: https://doi.org/10.1109/sist58284.2023.10223547.
9. Buhrov, A. A., Volokh, B. Y., Bosenko, I. V., & Terenchuk, S. A. (2024). The system for supporting the process of real estate restoration: Data processing and storage. Management of Complex Systems Development, 60, 136–145. URL: https://doi.org/10.32347/2412-9933.2024.60.136–145.
10. Hong, Z., et al. (2022). Classification of building damage using a novel convolutional neural network based on post-disaster aerial images. Sensors, 22 (15), 5920. URL: https://doi.org/10.3390/s22155920.
11. Mangalathu, S., et al. (2020). Classifying earthquake damage to buildings using machine learning. Earthquake Spectra, 36(1), 183–208. URL: https://doi.org/10.1177/8755293019878137.
12. Takhtkeshha, N., Mohammadzadeh, A., & Salehi, B. (2022). A rapid self-supervised deep-learning-based method for post-earthquake damage detection using UAV data (Case study: Sarpol-e Zahab, Iran). Remote Sensing, 15 (1), 123. URL: https://doi.org/10.3390/rs15010123.
13. Xiang, L., et al. (2021). Applications of multi-agent systems from the perspective of construction management:
A literature review. Engineering, Construction and Architectural Management, Ahead-of-print. URL: https://doi.org/10.1108/ecam-01-2021-0038.
14. Hu, Y., Wu, L., Li, N., & Zhao, T. (2024). Multi-agent decision-making in construction engineering and management:
A systematic review. Sustainability, 16 (16), 7132. URL: https://doi.org/10.3390/su16167132.
15. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), 3149–3157.
16. GeeksforGeeks (n.d.). Categorical cross-entropy in multi-class classification. URL: https://www.geeksforgeeks.org/categorical-cross-entropy-in-multi-class-classification/.
17. GeeksforGeeks. (n.d.). F1 Score in Machine Learning. URL: https://www.geeksforgeeks.org/f1-score-in-machine-learning/.
18. Komandirov, O. V. (2021). Intelligent Tools of Support the Process of Assessing Technical Condition of Buildings. Ph.D. thesis. Kyiv, 163 pages.
19. Volokh, B., et al. (2023). Modeling the process of assessing the technical condition of damaged real estate objects. Proceedings of the 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), Astana, Kazakhstan, 4–6 May 2023. https://doi.org/10.1109/sist58284.2023.10223547.