Оптимізація геоінформаційного сервісу в системі підтримки процесу відновлення об’єктів нерухомості
1. Terenchuk S., Pasko R., Buhrov A., Ploskyi V., Panko O. and Zapryvoda V. (2022). "Computerization of the process of reconstruction of damaged or destroyed real estate," 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, pp. 1–6, doi: 10.1109/KhPIWeek57572.2022.9916470.
2. Terenchuk S., Pasko R., Bosenko I., Buhrov A., Yaschenko A. and Volokh B., (2023). "Ontology Formation of Support System for Restoration of Buildings, Property and Infrastructure Objects," 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, pp. 1–5, doi: 10.1109/KhPIWeek61412.2023.10313006.
3. Singh, P., Kaur, A., Gupta, P. et al. (2021). RHAS: robust hybrid auto-scaling for web applications in cloud computing. Cluster Comput 24, 717–737. https://doi.org/10.1007/s10586-020-03148-5.
4. Mu, T., Sheng, Z., Zhou, L., Wang, H., (2023). Auto-TSA: An Automatic Time Series Analysis System Based on Meta-learning. In: El Abbadi, A., et al. Database Systems for Advanced Applications. DASFAA 2023 International Workshops. DASFAA 2023. Lecture Notes in Computer Science, vol. 13922. Springer, Cham. https://doi.org/10.1007/978-3-031-35415-1_10.
5. Biloshchytskyi A., Neftissov A., Kuchanskyi O., Andrashko Y., Biloshchytska S., Mukhatayev A., Kazambayev I. (2024). Fractal Analysis of Air Pollution Time Series in Urban Areas in Astana, Republic of Kazakhstan. Urban Science. 2024; 8 (3):131. https://doi.org/10.3390/urbansci8030131.
6. Wen L., Xu M., Toosi A. N. and Ye K., (2024). "TempoScale: A Cloud Workloads Prediction Approach Integrating Short-Term and Long-Term Information," 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), Shenzhen, China, pp. 183–193, doi: 10.1109/CLOUD62652.2024.00030.
7. Lanciano G., Galli F., Cucinotta T., Bacciu D., and Passarella A. (2021). Predictive auto-scaling with OpenStack Monasca. In Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing (UCC '21). Association for Computing Machinery, New York, NY, USA, Article 20, 1–10. https://doi.org/10.1145/3468737.3494104.
8. Ma Y., Tang Y., Li B. and Qi, B. (2020). "Residential High-Power Load Prediction Based on Optimized LSTM Network," 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE), Beijing, China, pp. 538–541, doi: 10.1109/ICAICE51518.2020.00109.
9. Ladyzhets, V. & Terenchuk S. (2021). Models and methods of technical analysis of financial markets. Management of Development of Complex Systems, 48, 47–52, dx.doi.org\10.32347/2412-9933.2021.48.47-52.
10. Scaling based on predictions | cloud.google. Google Cloud. URL: https://cloud.google.com/compute/docs/autoscaler/predictive-autoscaling.
11. Automatically scale your Amazon ECS service | docs.aws.amazon. AWS. URL: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html
1. Terenchuk S., Pasko R., Buhrov A., Ploskyi V., Panko O. and Zapryvoda V. (2022). "Computerization of the process of reconstruction of damaged or destroyed real estate," 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, pp. 1–6, doi: 10.1109/KhPIWeek57572.2022.9916470.
2. Terenchuk S., Pasko R., Bosenko I., Buhrov A., Yaschenko A. and Volokh B., (2023). "Ontology Formation of Support System for Restoration of Buildings, Property and Infrastructure Objects," 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, pp. 1–5, doi: 10.1109/KhPIWeek61412.2023.10313006.
3. Singh, P., Kaur, A., Gupta, P. et al. (2021). RHAS: robust hybrid auto-scaling for web applications in cloud computing. Cluster Comput 24, 717–737. https://doi.org/10.1007/s10586-020-03148-5.
4. Mu, T., Sheng, Z., Zhou, L., Wang, H., (2023). Auto-TSA: An Automatic Time Series Analysis System Based on Meta-learning. In: El Abbadi, A., et al. Database Systems for Advanced Applications. DASFAA 2023 International Workshops. DASFAA 2023. Lecture Notes in Computer Science, vol. 13922. Springer, Cham. https://doi.org/10.1007/978-3-031-35415-1_10.
5. Biloshchytskyi A., Neftissov A., Kuchanskyi O., Andrashko Y., Biloshchytska S., Mukhatayev A., Kazambayev I. (2024). Fractal Analysis of Air Pollution Time Series in Urban Areas in Astana, Republic of Kazakhstan. Urban Science. 2024; 8 (3):131. https://doi.org/10.3390/urbansci8030131.
6. Wen L., Xu M., Toosi A. N. and Ye K., (2024). "TempoScale: A Cloud Workloads Prediction Approach Integrating Short-Term and Long-Term Information," 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), Shenzhen, China, pp. 183–193, doi: 10.1109/CLOUD62652.2024.00030.
7. Lanciano G., Galli F., Cucinotta T., Bacciu D., and Passarella A. (2021). Predictive auto-scaling with OpenStack Monasca. In Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing (UCC '21). Association for Computing Machinery, New York, NY, USA, Article 20, 1–10. https://doi.org/10.1145/3468737.3494104.
8. Ma Y., Tang Y., Li B. and Qi, B. (2020). "Residential High-Power Load Prediction Based on Optimized LSTM Network," 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE), Beijing, China, pp. 538–541, doi: 10.1109/ICAICE51518.2020.00109.
9. Ladyzhets, V. & Terenchuk S. (2021). Models and methods of technical analysis of financial markets. Management of Development of Complex Systems, 48, 47–52, dx.doi.org\10.32347/2412-9933.2021.48.47-52.
10. Scaling based on predictions | cloud.google. Google Cloud. URL: https://cloud.google.com/compute/docs/autoscaler/predictive-autoscaling.
11. Automatically scale your Amazon ECS service | docs.aws.amazon. AWS. URL: https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html