Машинне навчання Байєсової нейронної мережі з гамма-розподілом для оцінювання стійкості монорейкового крана
1. Linka, K., Holzapfel, G. A. and Kuhl, E. Discovering uncertainty: Bayesian constitutive artificial neural networks. Computer Methods in Applied Mechanics and Engineering, 2025, vol. 433, p. 117517. DOI: 10.1016/j.cma.2024.117517.
2. Elmousalami, H., Elshaboury, N., Ibrahim, A. H., & Elyamany, A. H. Bayesian optimized ensemble learning system for predicting conceptual cost and construction duration of irrigation improvement systems. KSCE Journal of Civil Engineering, 2025, vol. 29 (3), p. 100014. DOI: https://doi.org/10.1016/j.kscej.2024.100014.
3. Терентьєв, О. О., & Соловей, Б. А. Байєсова нейронна мережа для зменшення аварійності експлуатації будівельного баштового крана. Управління розвитком складних систем, 2024, (57), с. 96–101. DOI: 10.32347/2412-9933.2024.57.96-101.
4. Xu, X. and Wang, J. Comparative Analysis of Physics-Guided Bayesian Neural Networks for Uncertainty Quantification in Dynamic Systems. Forecasting, 2025, vol. 7 (1), p. 9.
5. Li, Q., Fan, W., Huang, M., Jin, H., Zhang, J., & Ma, J. Machine learning-based prediction of dynamic responses of a tower crane under strong coastal winds. Journal of Marine Science and Engineering, 2023, vol. 11 (4), p. 803. DOI: 10.3390/jmse11040803.
6. Kim, G.H., Pham, P.T., Ngo, Q.H. and Nguyen, Q.C. Neural network-based robust anti-sway control of an industrial crane subjected to hoisting dynamics and uncertain hydrodynamic forces. International Journal of Control, Automation and Systems, 2021, vol. 19 (5), pp. 1953–1961.
7. Al-Tuhaifi, S. B. and Al-Aubidy, K. M. Neuro-fuzzy-based anti-swing control of automatic tower crane. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2023, 21 (4), pp. 891–900. DOI: 10.12928/TELKOMNIKA.v21i4.24044.
8. ZUO, Y., Zhao, F., Yang, K. and Yang, R. Fatigue Life Assessment of Tower Crane Based on Neural Network to Obtain Stress Spectrum. 2021. DOI: 10.21203/rs.3.rs-1074638/v1.
9. Волянюк, В. О., Горбатюк, Є. В. Розрахунок механізмів вантажопідіймальних машин: навч. посіб. Київ: КНУБА, 2021. 136 с. ISBN 978-966-627-233-4.
10. Lipiec, S., Zvirko, O., Dzioba, I., & Venhryniuk, O. Application of the numerical simulation method for the strength analysis of long-term portal crane components. Advances in Science and Technology. Research Journal, 2025, 19 (4). DOI: 10.12913/22998624/200055.
11. Іванов, Є. М., Іваненко, О. І., Щербак, О. В., & Любимов, Ю. Ю. Розробка рекомендацій щодо оптимізації геометрії баштових кранів. 2022. DOI: 10.30977/BUL.2219-5548.2022.99.0.26.
12. Kaji, T., & Ročková, V. Metropolis–Hastings via classification. Journal of the American Statistical Association, 2023, 118 (544), pp. 2533–2547.
1. Linka, K., Holzapfel, G.A., & Kuhl, E. (2025). Discovering uncertainty: Bayesian constitutive artificial neural networks. Computer Methods in Applied Mechanics and Engineering, 433, 117517. https://doi.org/10.1016/j.cma.2024.117517.
2. Elmousalami, H., Elshaboury, N., Ibrahim, A. H., & Elyamany, A. H. (2025). Bayesian optimized ensemble learning system for predicting conceptual cost and construction duration of irrigation improvement systems. KSCE Journal of Civil Engineering, 29 (3), 100014. https://doi.org/10.1016/j.kscej.2024.100014.
3. Terentyev, O. O., & Solovey, B. A. (2024). Bayesian neural network for reducing the accident rate of building tower crane operation. Management of Complex Systems Development, (57), 96–101. https://doi.org/10.32347/2412-9933.2024.57.96-101.
4. Xu, X., & Wang, J. (2025). Comparative analysis of physics-guided Bayesian neural networks for uncertainty quantification in dynamic systems. Forecasting, 7(1), 9.
5. Li, Q., Fan, W., Huang, M., Jin, H., Zhang, J., & Ma, J. (2023). Machine learning-based prediction of dynamic responses of a tower crane under strong coastal winds. Journal of Marine Science and Engineering, 11(4), 803. https://doi.org/10.3390/jmse11040803
6. Kim, G.H., Pham, P.T., Ngo, Q.H., & Nguyen, Q.C. (2021). Neural network-based robust anti-sway control of an industrial crane subjected to hoisting dynamics and uncertain hydrodynamic forces. International Journal of Control, Automation and Systems, 19(5), 1953–1961.
7. Al-Tuhaifi, S.B., & Al-Aubidy, K.M. (2023). Neuro-fuzzy-based anti-swing control of automatic tower crane. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(4), 891–900. https://doi.org/10.12928/TELKOMNIKA.v21i4.24044
8. Zuo, Y., Zhao, F., Yang, K., & Yang, R. (2021). Fatigue life assessment of tower crane based on neural network to obtain stress spectrum. https://doi.org/10.21203/rs.3.rs-1074638/v1
9. Volyaniuk, V. O., & Horbatiuk, Ye. V. (2021). Calculation of lifting mechanisms: Textbook. Kyiv: KNUBA.
10. Lipiec, S., Zvirko, O., Dzioba, I., & Venhryniuk, O. (2025). Application of the numerical simulation method for the strength analysis of long-term portal crane components. Advances in Science and Technology. Research Journal, 19 (4). https://doi.org/10.12913/22998624/200055
11. Ivanov, Ye. M., Ivanenko, O. I., Shcherbak, O. V., & Liubymov, Yu. Yu. (2022). Development of recommendations for optimizing the geometry of tower cranes. https://doi.org/10.30977/BUL.2219-5548.2022.99.0.26
12. Kaji, T., & Ročková, V. (2023). Metropolis – Hastings via classification. Journal of the American Statistical Association, 118(544), 2533–2547.