Сучасні технологічні рішення зберігання даних у проєктах міського будівництва
1. Honcharenko, T., Khrolenko, V., Gorbatyuk, I., Liashchenko, M., Bodnar, N., & Sherif, N. H. (2024). Smart integration of information technologies for city digital twins. In 2024 35th Conference of Open Innovations Association (FRUCT) (pp. 253-258). IEEE.
2. Solovei, O., Honcharenko, T., & Fesan, A. (2024). Technologies to manage big data of urban building projects. Management of Development of Complex Systems, 60, 121–128. URL: https://doi.org/10.32347/2412-9933.2024.60.121-128.
3. Dolhopolov, S., Honcharenko, T., Savenko, V., Balina, O., Bezklubenko, I., & Liashchenko, T. (2023). Construction site modeling objects using artificial intelligence and BIM technology: A multi-stage approach. In 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST) (pp. 174-179). IEEE.
4. Ohene, E., Nani, G., Antwi-Afari, M. F., Darko, A., Addai, L. A., & Horvey, E. (2024). Big data analytics in the AEC industry: scientometric review and synthesis of research activities. Engineering, Construction and Architectural Management. URL: https://doi.org/10.1108/ECAM-01-2024-0144.
5. Kulikov, P., Ryzhakova, G., Honcharenko, T., & Ryzhakov, D. (2020). Olap-tools for the formation of connected and diversified production and project management systems. International Journal of Advanced Trends in Computer Science and Engineering, 9 (5), 8670-8676.
6. Rana, M. (2025). A review of the impact of big data on smart cities. URL: https://doi.org/10.56557/jobari/2025/v31i29162.
7. Jamarani, A., Haddadi, S., Sarvizadeh, R., Haghi Kashani, M., Akbari, M., & Moradi, S. (2024). Big data and predictive analytics: A systematic review of applications. Artificial Intelligence Review, 57 (7), 176. URL: https://doi.org/10.1007/s10462-024-10811-5.
8. Hassan, I. (2024). Storage structures in the era of big data: from data warehouse to lakehouse. Journal of Theoretical and Applied Information Technology, 102 (6).
9. Azzabi, S., Alfughi, Z., & Ouda, A. (2024). Data lakes: A survey of concepts and architectures. Computers, 13 (7), 183. URL: https://doi.org/10.3390/computers13070183.
10. Schneider, J., Gröger, C., Lutsch, A., Schwarz, H., & Mitschang, B. (2024). The lakehouse: State of the art on concepts and technologies. SN Computer Science, 5 (5), 449.
11. Plazotta, M., & Klettke, M. (2024). Data architectures in cloud environments. Datenbank-Spektrum, 24 (3), 243–247. URL: https://doi.org/10.1007/s13222-024-00490-5.
12. Panda, S. P. (2024). Comparative analysis of azure cosmos DB vs. traditional RDBMS on cloud. Traditional RDBMS on Cloud (July 22, 2024). URL: https://doi.org/10.5281/zenodo.15481723.
13. Salqvist, P. (2024). A comparative study of the data warehouse and data lakehouse architecture.
14. Eswararaj, D., Nellipudi, A. B., & Kollati, V. (2025). A comparative study of delta parquet, iceberg, and hudi for automotive data engineering use cases. arXiv preprint arXiv:2508.13396. URL: https://doi.org/10.14445/23488387/IJCSE-V12I17P104.
1. Honcharenko, T., Khrolenko, V., Gorbatyuk, I., Liashchenko, M., Bodnar, N., & Sherif, N. H. (2024). Smart integration of information technologies for city digital twins. In 2024 35th Conference of Open Innovations Association (FRUCT) (pp. 253-258). IEEE.
2. Solovei, O., Honcharenko, T., & Fesan, A. (2024). Technologies to manage big data of urban building projects. Management of Development of Complex Systems, 60, 121–128. URL: https://doi.org/10.32347/2412-9933.2024.60.121-128.
3. Dolhopolov, S., Honcharenko, T., Savenko, V., Balina, O., Bezklubenko, I., & Liashchenko, T. (2023). Construction site modeling objects using artificial intelligence and BIM technology: A multi-stage approach. In 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST) (pp. 174-179). IEEE.
4. Ohene, E., Nani, G., Antwi-Afari, M. F., Darko, A., Addai, L. A., & Horvey, E. (2024). Big data analytics in the AEC industry: scientometric review and synthesis of research activities. Engineering, Construction and Architectural Management. URL: https://doi.org/10.1108/ECAM-01-2024-0144.
5. Kulikov, P., Ryzhakova, G., Honcharenko, T., & Ryzhakov, D. (2020). Olap-tools for the formation of connected and diversified production and project management systems. International Journal of Advanced Trends in Computer Science and Engineering, 9 (5), 8670-8676.
6. Rana, M. (2025). A review of the impact of big data on smart cities. URL: https://doi.org/10.56557/jobari/2025/v31i29162.
7. Jamarani, A., Haddadi, S., Sarvizadeh, R., Haghi Kashani, M., Akbari, M., & Moradi, S. (2024). Big data and predictive analytics: A systematic review of applications. Artificial Intelligence Review, 57 (7), 176. URL: https://doi.org/10.1007/s10462-024-10811-5.
8. Hassan, I. (2024). Storage structures in the era of big data: from data warehouse to lakehouse. Journal of Theoretical and Applied Information Technology, 102 (6).
9. Azzabi, S., Alfughi, Z., & Ouda, A. (2024). Data lakes: A survey of concepts and architectures. Computers, 13 (7), 183. URL: https://doi.org/10.3390/computers13070183.
10. Schneider, J., Gröger, C., Lutsch, A., Schwarz, H., & Mitschang, B. (2024). The lakehouse: State of the art on concepts and technologies. SN Computer Science, 5 (5), 449.
11. Plazotta, M., & Klettke, M. (2024). Data architectures in cloud environments. Datenbank-Spektrum, 24 (3), 243–247. URL: https://doi.org/10.1007/s13222-024-00490-5.
12. Panda, S. P. (2024). Comparative analysis of azure cosmos DB vs. traditional RDBMS on cloud. Traditional RDBMS on Cloud (July 22, 2024). URL: https://doi.org/10.5281/zenodo.15481723.
13. Salqvist, P. (2024). A comparative study of the data warehouse and data lakehouse architecture.
14. Eswararaj, D., Nellipudi, A. B., & Kollati, V. (2025). A comparative study of delta parquet, iceberg, and hudi for automotive data engineering use cases. arXiv preprint arXiv:2508.13396. URL: https://doi.org/10.14445/23488387/IJCSE-V12I17P104.