Дослідження та вибір великих мовних моделей для автоматизації міграції АВАР-коду
1. SAP S/4HANA cloud is a leader in 2024 Gartner® magic quadrantTM for cloud ERP for service-centric enterprises and 2024 Gartner® magic quadrantTM for cloud ERP for product-centric enterprises. URL: https://news.sap.com/2024/11/sap-a-leader-2024-gartner-magic-quadrant-cloud-erp-for-service-centric-enterprises-product-centric-enterprises/ (дата звернення: 17.07.2025).
2. Hardy P. Migrating custom code to SAP S/4HANA. Boston: Rheinwerk Publishing Inc, 2020. P. 333. ISBN 978-1-4932-1994-0.
3. Поздняков О. А., Пархоменко А. В. Міграція користувацького програмного забезпечення при інтелектуальному реінжинірингу складних комп'ютерних систем. Сучасні проблеми і досягнення в галузі радіотехніки, телекомунікацій та інформаційних технологій: XII Міжнародна НПК, Запоріжжя, 10-12 грудня 2024: тези доповідей. Запоріжжя: НУЗП, 2024. С. 493–495.
4. Бушуєв Д. А., Лобок Є. А. Систематичний підхід у створенні інноваційних проєктів і продуктів на основі застосувань штучного інтелекту. Управління розвитком складних систем. Київ, 2025. № 61. С. 35 – 41, dx.doi.org\ 10.32347/2412-9933.2025.61.35-41.
5. Migrating code at scale with LLMs at Google / Ziftci C. el at. 2025. 12p. (Preprint. arXiv.2504.09691). URL: https://doi.org/10.48550/arXiv.2504.09691 (дата звернення: 17.07.2025).
6. CODEMENV: Benchmarking large language models on code migration. Cheng K. el at. 2025. 25p. (Preprint. arXiv.2506.00894) URL: https://doi.org/10.48550/arXiv.2506.00894 (дата звернення: 17.07.2025).
7. Amazon Q developer just reached a $260 million dollar milestone | AWS DevOps & developer productivity blog. URL: https://aws.amazon.com/blogs/devops/amazon-q-developer-just-reached-a-260-million-dollar-milestone/ (дата звернення: 17.07.2025).
8. Almeida A., Xavier L., Valente M. T. Automatic library migration using large language models: first results. Barcelona Spain: ACM, 2024. P. 427-433. DOI: 10.1145/3674805.3690746.
9. Automatic Qiskit code refactoring using large language models / Suárez J. M. el at. 2025. 7p. (Preprint. arXiv.2506.14535) URL: https://doi.org/10.48550/arXiv.2506.14535 (дата звернення: 17.07.2025).
10. SAP build’s next leap: generative AI and ABAP. URL: https://news.sap.com/2024/10/sap-build-generative-ai-abap/ (дата звернення: 17.07.2025).
11. Is chatGPT safe for business? 8 security risks & compliance guide 2025. URL: https://www.metomic.io/resource-centre/is-chatgpt-a-security-risk-to-your-business (дата звернення: 17.07.2025).
12. Don’t stop pretraining: adapt language models to domains and tasks / Gururangan S. el at. 2020. 19p. (Preprint. arXiv.2004.10964) URL: https://doi.org/10.48550/arXiv.2004.10964 (дата звернення: 17.07.2025).
13. How much does GPT-4 cost? URL: https://help.openai.com/en/articles/7127956-how-much-does-gpt-4-cost (дата звернення: 17.07.2025).
14. Omidvar Tehrani B., Ishaani M., Anubhai A. Evaluating human-AI partnership for LLM-based code migration. Honolulu HI USA: ACM, 2024. P. 1-8. DOI: 10.1145/3613905.3650896.
15. A survey on large language model (LLM) security and privacy: the good, the bad, and the ugly / Yao Y. el at. High-Confidence Computing. 2024. Vol. 4, № 2. P. 100211. DOI: 10.1016/j.hcc.2024.100211.
16. Evaluating large language models trained on code / Chen M. el at. 2021. 8p. (Preprint. (Preprint. arXiv.2107.03374) URL: https://doi.org/10.48550/arXiv.2107.03374 (дата звернення: 17.07.2025).
17. Lang J., Guo Z., Huang S. A comprehensive study on quantization techniques for large language models. 2024. 8p. (Preprint. arXiv.2411.02530) URL: https://doi.org/10.48550/arXiv.2411.02530 (дата звернення: 17.07.2025).
18. Wang L., Chen S., Jiang L., Pan S., Cai R., Yang S., Yang F. Parameter-efficient fine-tuning in large models: a survey of methodologies. 2025. 35p. (Preprint. arXiv.2410.19878) URL: https://doi.org/10.48550/arXiv.2410.19878 (дата звернення: 17.07.2025).
19. QwenLM/Qwen2.5-Coder. URL: https://github.com/QwenLM/Qwen2.5-Coder (дата звернення: 17.07.2025).
20. Deepseek-ai/DeepSeek-Coder-V2. URL: https://github.com/deepseek-ai/DeepSeek-Coder-V2 (дата звернення: 17.07.2025).
21. Gemma 3. Google DeepMind. URL: https://deepmind.google/models/gemma/gemma-3/ (дата звернення: 17.07.2025).
22. meta-llama/codellama. URL: https://github.com/meta-llama/codellama (дата звернення: 17.07.2025).
23. Llama 3.1| Meta Llama. URL: https://www.llama.com/llama3_1/ (дата звернення: 17.07.2025).
24. Mistral NeMo | Mistral AI. URL: https://mistral.ai/news/mistral-nemo (дата звернення: 17.07.2025).
25. microsoft/Phi-3-medium-128k-instruct URL: https://huggingface.co/microsoft/Phi-3-medium-128k-instruct (дата звернення: 17.07.2025).
26. Edwards W., Barron F. H. SMARTS and SMARTER: improved simple methods for multiattribute utility measurement. Organizational behavior and human decision processes. 1994. Vol. 60, № 3. P. 306–325. DOI: 10.1006/obhd.1994.1087.
27. Mateo J. R. S. C. Weighted sum method and weighted product method. Multi criteria analysis in the renewable energy industry. London: Springer, 2012. P. 19–22. ISBN 978-1-4471-2345-3.
28. Saaty T. L., Vargas L. G. Models, methods, concepts & applications of the analytic hierarchy process. New York: Springer, 2012. P.346. ISBN 978-1-4614-3597-6.
29. Pandey V., Komal, Dincer H. A review on TOPSIS method and its extensions for different applications with recent development. Soft Computing. 2023. Vol. 27, 23. P. 18011–18039. DOI: 10.1007/s00500-023-09011-0.
30. Sivalingam C., Subramaniam S. K. Cobot selection using hybrid AHP-TOPSIS based multi-criteria decision making technique for fuel filter assembly process. Heliyon. 2024. Vol. 10, № 4. DOI: 10.1016/j.heliyon.2024.e26374.
1. SAP S/4HANA cloud is a leader in 2024 gartner® magic quadrant™ for cloud ERP for service-centric enterprises and 2024 gartner® magic quadrant™ for cloud ERP for product-centric enterprises. (2024). https://news.sap.com/2024/11/sap-a-leader-2024-gartner-magic-quadrant-cloud-erp-for-service-centric-enterprises-product-centric-enterprises/).
2. Hardy, P. (2020). Migrating custom code to SAP S/4HANA. Rheinwerk Publishing Inc. 978-1-4932-1994-0.
3. Pozdnyakov, O. A., & Parkhomenko, A. V. (2024). Custom code migration in intelligent reengineering of complex computer systems. Modern problems and achievements in radio engineering, telecommunications and information technologies: XII International Scientific and Practical Conference, Zaporizhzhia, December 10-12, 2024: Abstracts (pp. 493–495). NUZP.
4. Bushuiev, D. A., & Lobok, Y. A. (2025). A systematic approach to creating innovative projects and products based on artificial intelligence applications. Management of Development of Complex Systems, 61, 35–41. https://dx.doi.org/10.32347/2412-9933.2025.61.35-41.
5. Ziftci, C., Nikolov, S., Sjövall, A., Kim, B., Codecasa, D., & Kim, M. (2025). Migrating code at scale with LLMs at Google. ArXiv. https://doi.org/10.48550/arXiv.2504.09691.
6. Cheng, K., Shen, X., Yang, Y., Wang, T., Cao, Y., Ali, M. A., Wang, H., Hu, L., & Wang, D. (2025). CODEMENV: Benchmarking large language models on code migration. ArXiv. https://doi.org/10.48550/arXiv.2506.00894.
7. Amazon Web Services. (2024, August 2). Amazon Q Developer just reached a $260 million dollar milestone. https://aws.amazon.com/blogs/devops/amazon-q-developer-just-reached-a-260-million-dollar-milestone/.
8. Almeida, A., Xavier, L., & Valente, M. T. (2024). Automatic library migration using large language models: First results. Proceedings of the 18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM '24) (pp. 427-433). Association for Computing Machinery. https://doi.org/10.1145/3674805.3690746.
9. Suárez, J. M., Bibbó, L. M., Bogado, J., & Fernandez, A. (2025). Automatic Qiskit code refactoring using large language models. ArXiv. https://doi.org/10.48550/arXiv.2506.14535.
10. Chirapurath, J. G. (2024). SAP build's next leap: generative AI and ABAP. https://news.sap.com/2024/10/sap-build-generative-ai-abap/.
11. Metomic. (n.d.). Is ChatGPT a security risk to your business? Metomic. https://www.metomic.io/resource-centre/is-chatgpt-a-security-risk-to-your-business.
12. Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., & Smith, N. A. (2020). Don't stop pretraining: adapt language models to domains and tasks. ArXiv. https://doi.org/10.48550/arXiv.2004.10964.
13. OpenAI. (n.d.). How much does GPT-4 cost? https://help.openai.com/en/articles/7127956-how-much-does-gpt-4-cost.
14. Omidvar Tehrani, B., Ishaani, M., & Anubhai, A. (2024). Evaluating human‑AI partnership for LLM‑based code migration. Extended abstracts of the CHI Conference on Human Factors in Computing Systems (pp. 1–8). ACM. https://doi.org/10.1145/3613905.3650896.
15. Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., & Zhang, Y. (2024). A survey on large language model (LLM) security and privacy: The good, the bad, and the ugly. High‑Confidence Computing, 4 (2), 100211. https://doi.org/10.1016/j.hcc.2024.100211.
16. Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde de Oliveira Pinto, H., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Zaremba, W. (2021). Evaluating large language models trained on code. ArXiv. https://doi.org/10.48550/arXiv.2107.03374.
17. Lang, J., Guo, Z., & Huang, S. (2024). A comprehensive study on quantization techniques for large language models. ArXiv. https://doi.org/10.48550/arXiv.2411.02530.
18. Wang, L., Chen, S., Jiang, L., Pan, S., Cai, R., Yang, S., & Yang, F. (2024). Parameter‑efficient fine‑tuning in large models: A survey of methodologies. ArXiv. https://doi.org/10.48550/arXiv.2410.19878.
19. QwenLM. (n.d.). Qwen2.5-Coder [Source code]. GitHub. https://github.com/QwenLM/Qwen2.5-Coder.
20. Deepseek-ai. (n.d.). DeepSeek-Coder-V2 [Source code]. GitHub. https://github.com/deepseek-ai/DeepSeek-Coder-V2.
21. DeepMind. (n.d.).). Gemma 3 [Model card]. DeepMind. https://deepmind.google/models/gemma/gemma-3/.
22. Meta. (n.d.). CodeLlama [Source code]. GitHub. https://github.com/meta-llama/codellama.
23. Meta. (n.d.). LLaMA 3.1 [Model page]. https://www.llama.com/llama3_1/.
24. Mistral AI. (n.d.). Mistral Nemo [News page]. https://mistral.ai/news/mistral-nemo.
25. Microsoft. (n.d.). Phi-3 medium 128k instruct [Model card]. Hugging Face. https://huggingface.co/microsoft/Phi-3-medium-128k-instruct.
26. Edwards, W., & Barron, F. H. (1994). SMARTs and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes, 60(3), 306–325. https://doi.org/10.1006/obhd.1994.1087.
27. Mateo, J. R. S. C. (2012). Weighted sum method and weighted product method. Multi criteria analysis in the renewable energy industry (pp. 19–22). Springer London. https://doi.org/10.1007/978-1-4471-2346-0_4.
28. Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process (2nd ed.). Springer.
29. Pandey, V., Komal, & Dincer, H. (2023). A review on TOPSIS method and its extensions for different applications with recent development. Soft Computing, 27 (23), 18011–18039. https://doi.org/10.1007/s00500-023-09011-0.
30. Sivalingam, C., & Subramaniam, S. K. (2024). Cobot selection using hybrid AHP-TOPSIS based multi-criteria decision making technique for fuel filter assembly process. Heliyon, 10(4), Article e26374. https://doi.org/10.1016/j.heliyon.2024.e26374.