Метод визначення часу виконання програм у системах реального часу
1. Юрович І., Зайцев В. Метод визначення часових характеристик систем реального часу. Управління розвитком складних систем. 2024. Вип. 59. С. 148–154. URL: https://doi.org/10.32347/2412-9933.2024.59.148-154.
2. Зайцев В. Г., Цибаєв Є. І. Оцінка часових характеристик у компʼютерних системах реального часу з використанням сіток Петрі. Управління розвитком складних систем. 2023. № 54. С. 48–62.
3. Зайцев В. Г., Цибаєв Є. І. Модель оцінки часових характеристик у комп’ютерних системах реального часу з використанням сіток Петрі. Управління розвитком складних систем. 2019. № 40. С. 76–86. DOI: URL: dx.doi.org\10.6084/m9.figshare.11969013.
4. Зайцев В. Г., Цибаєв Є. І. Оцінка часових характеристик задач в багатопроцесорних системах реального часу з використанням сіток Петрі. Управління розвитком складних систем. 2020. № 42. С. 43–50.
5. Зайцев В. Г., Цибаєв Є. І. Комп’ютерні системи реального часу: навч. посіб. Київ, 2019.
6. Ciyun L. et al. Vehicle Detection and Tracking with Roadside LiDAR Using Improved ResNet18 and the Hungarian Algorithm. Sensors. 2023. Vol. 23, № 15. Art. 6757. URL: https://doi.org/10.3390/s23156757.
7. Joong-hee H., Chi-ho P. Performance evaluation on GNSS, wheel speed sensor, yaw rate sensor, and gravity sensor integrated positioning algorithm for automotive navigation system. E3S Web of Conferences. Republic of Korea, 2019. Vol. 84. Art. 01004. URL: https://doi.org/10.1051/e3sconf/20198401004.
8. Prasetyono A. P. et al. Multiple Sensing Method Using Moving Average Filter for Automotive Ultrasonic Sensor. Journal of Physics: Conference Series. 2020. Vol. 1569. Art. 032001. URL: https://doi.org/10.1088/1742-6596/1569/3/032001.
9. Kumagai O. et al. 7.3 A 189×600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems. 2021 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, USA, 2021. P. 110–112. URL: https://doi.org/10.1109/ISSCC42661.2021.9366114.
10. Almadani B., Alshammari N., Al-Roubaiey A. Adaptive Cruise Control Based on Real-Time DDS Middleware. IEEE Access. 2023. Vol. 11. P. 75407–75423. URL: https://doi.org/10.1109/ACCESS.2023.3296317.
11. Liu Y., Li F., Sun B. Self-Tuning Backstepping Control with Kalman-like Filter for High-Precision Control of Automotive Electronic Throttle. Electronics. 2023. Vol. 12, № 10. Art. 2262. URL: https://doi.org/10.3390/electronics12102262.
12. Wu T., Li J., Qin X. Braking performance oriented multi–objective optimal design of electro–mechanical brake parameters. PLoS ONE. 2021. Vol. 16, № 5. Art. e0251714. URL: https://doi.org/10.1371/journal.pone.0251714.
13. Kreß J. et al. Low-Cost Throttle-By-Wire-System Architecture for Two-Wheeler Vehicles. SAE Technical Paper Series. SAE International, 2023. URL: https://doi.org/10.4271/2023-01-0498.
14. Salgado V., Gomes D., Andrade Lima C. Modeling and Simulation of an Electromagnetic Brake-by-Wire System for Formula SAE Vehicles. SAE Technical Paper Series. SAE International, 2024. URL: https://doi.org/10.4271/2024-01-0495
1. Yurovych, I., & Zaitsev, V. (2024). Method of determining timing parameters of real time systems. Management of Development of Complex Systems, 59, 148–154. DOI: URL: https://doi.org/10.32347/2412-9933.2024.59.148-154.
2. Zaitsev, V., & Tsybaev, E. (2023). Estimation of timing characteristics in real-time computer systems using petri nets. Management of Development of Complex Systems, 40, 48–62.
3. Zaitsev, V., & Tsybaev, E. (2019). A model for estimating time characteristics in real-time computer systems using Petri nets. Management of Development of Complex Systems, 40, 76–86.
4. Zaitsev, V., & Tsybaev, E. (2020). Evaluation of time characteristics of problems in multiprocessor real-time systems using petri networks. Management of Development of Complex Systems, 42, 43–50.
5. Zaitsev, V. G., & Tsybaev, E. I. (2019). Real-time computer systems: A textbook. Kyiv, Ukraine: National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute".
6. Ciyun, L., Liu, Y., Zhang, X., Li, X., Wu, X., & Liu, X. (2023). Vehicle Detection and Tracking with Roadside LiDAR Using Improved ResNet18 and the Hungarian Algorithm. Sensors, 23(15), 6757. DOI: URL: https://doi.org/10.3390/s23156757.
7. Joong-hee, H., & Chi-ho, P. (2019, May 8). Performance evaluation on GNSS, wheel speed sensor, yaw rate sensor, and gravity sensor integrated positioning algorithm for automotive navigation system. In E3S Web of Conferences (Vol. 84, p. 01004). Republic of Korea: EDP Sciences. DOI: URL: https://doi.org/10.1051/e3sconf/20198401004.
8. Prasetyono, A. P., Suwito, A., & Budi, S. (2020). Multiple Sensing Method Using Moving Average Filter for Automotive Ultrasonic Sensor. Journal of Physics: Conference Series, 1569(3), 032001. DOI: URL: https://doi.org/10.1088/1742-6596/1569/3/032001.
9. Kumagai, O., Takamatsu, S., Tanaka, S., Tanaka, K., Oikawa, H., Kawada, Y., Suzuki, A., Arai, H., & Sakata, S. (2021). 7.3 A 189×600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems. In 2021 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 110–112). San Francisco, USA: IEEE. DOI: URL: https://doi.org/10.1109/ISSCC42661.2021.9366114.
10. Almadani, B., Alshammari, N., & Al-Roubaiey, A. (2023). Adaptive Cruise Control Based on Real-Time DDS Middleware. IEEE Access, 11, 75407–75423. DOI: URL: https://doi.org/10.1109/ACCESS.2023.3296317.
11. Liu, Y., Li, F., & Sun, B. (2023). Self-Tuning Backstepping Control with Kalman-like Filter for High-Precision Control of Automotive Electronic Throttle. Electronics, 12(10), 2262. DOI: URL: https://doi.org/10.3390/electronics12102262.
12. Wu, T., Li, J., & Qin, X. (2021). Braking performance oriented multi–objective optimal design of electro–mechanical brake parameters. PLoS ONE, 16(5), e0251714. DOI: URL: https://doi.org/10.1371/journal.pone.0251714.
13. Kreß, J., Beirer, T., & Gruler, T. (2023). Low-Cost Throttle-By-Wire-System Architecture for Two-Wheeler Vehicles. SAE Technical Paper Series. SAE International. DOI: URL: https://doi.org/10.4271/2023-01-0498.
14. Salgado, V., Gomes, D., & Andrade Lima, C. (2024). Modeling and Simulation of an Electromagnetic Brake-by-Wire System for Formula SAE Vehicles. SAE Technical Paper Series. SAE International. DOI: URL: https://doi.org/10.4271/2024-01-0495.