Аннотації

Автор(и):
Ніколаєв М. О.
Автор(и) (англ)
Nikolaiev Mykyta
Дата публікації:

05.12.2022

Анотація (укр):

Розвиток технологій привів до фундаментальних змін у тому, як працюють фінансові ринки, починаючи з початкового етапу формування акцій і продовжуючи торгівлею цими акціями. Технології кардинально змінили спосіб здійснення інвестицій. Фінансові ринки на сьогодні значною мірою комп’ютеризовані: від подачі заявок на основі програмного забезпечення до визначення ціни і прямого клірингу та розрахунків. Комп’ютерні технології витіснили ручні операції і спростили функції на всьому ланцюжку створення вартості. Фондові ринки по всьому світу використовують технологічні досягнення для безпечного управління транзакціями та моніторингу. Наразі сучасна торгівля на фондовій біржі проходить без фізичного контакту брокерів і надає безмежні можливості для дослідження тенденцій ринку і купівлі акцій. Завдяки впровадженню технологій фондовий ринок став більш зручним для користувачів, забезпечуючи більш швидкі розрахунки з операцій, підвищену прозорість, підвищену безпеку, автоматизоване спостереження та багато іншого. Тісний зв’язок інформаційних технологій і фінансових ринків не викликає сумнівів, як і актуальність дослідження використання інформаційних технологій та інноваційних рішень для досягнення найвищих результатів на фінансових ринках. Метою дослідження є огляд та аналіз сучасних інформаційних технологій, які використовуються в торгівлі цінними паперами. Зокрема зосереджено увагу на: інструментах прогнозування тенденцій на фінансових ринках; технологічних рішеннях для підвищення фінансової грамотності населення, відкритого доступу до ринку цінних паперів не залежно від вікової категорії користувача, його професійної діяльності, тощо; перевагах та недоліках онлайн-трейдингу, специфіці роботи онлайн-брокерів та їхній ролі в торгівлі на фінансових ринках; технічному аналізі, аналізі часових рядів та квантових обчисленнях для аналізу трендів на фінансових ринках; використанні інформаційних технологій на ринку деривативів.

Анотація (рус):

Анотація (англ):

It is impossible to deny the importance of technology in our modern life. Technology has had a significant impact on almost every aspect of modern life, including but not limited to socializing, commuting, shopping, studying, and everything else. Over the years, the impact of technology has grown to such an extent that even aspects such as investment and the stock market are beginning to feel some impact. The stock market and technological progress are important components of the modern world. Technology has led to fundamental changes in the way financial markets operate, starting with the very first stage of stock formation and continuing to trade those stocks. Technology has undoubtedly radically changed the way investments are made. Financial markets today are largely computerized ‒ from software-based bidding to price determination and direct clearing and settlement, computer technologies have replaced manual operations and simplified functions throughout the value chain in trading. Stock markets around the world are leveraging technological advances for Secure Transaction Management and monitoring. Until a few years ago, brokers shouted at each other for exchanging orders on the stock exchange. However, today's stock exchange trading takes place without physical contact from brokers and provides unlimited opportunities for studying market trends and buying stocks. Thanks to the introduction of technology, the stock market has become more user-friendly, providing faster settlements on transactions, increased transparency, increased security, automated surveillance, and much more. The close relationship between information technologies and financial markets is beyond doubt, as is the relevance of research on the use of various information technologies and innovative solutions to achieve the highest results in financial markets. The purpose of this study is to identify and analyze modern information technologies used in securities trading. In particular, attention is focused on: tools for predicting trends in financial markets; technological solutions for improving financial literacy of the population, open access to the securities market regardless of the age category of the user, his professional activity, etc.; advantages and disadvantages of online trading, the specifics of online brokers and their role in trading on financial markets; technical analysis, time series analysis and quantum computing for analyzing trends in financial markets; using information technologies in the derivatives market.

Література:

1.     Gao, M., Huang, J. (2020). Informing the market: the effect of modern information technologies on information production. The review of Financial Studies, 33 (4), 1367–1411 (https://doi.org/10.1093/rfs/hhz100).

2.     Chang, P. C., Liao, T. W., Lin, J. J., Fan, C. Y. (2011). A dynamic threshold decision system for stock trading signal detection. Applied Soft Computing, 11 (5), 3998–4010.

3.     Sun, Q., Lim, C. C., Shi, P., Liu, F. (2016). Moving horizon estimation for Markov jump systems. Information Science, 367, 143–158.

4.     Jiang, H., Zhang, H., Luo, Y., Wang, J. (2016). Optimal tracking control for completely unknown nonlinear discrete-time Markov jump systems using data-based reinforcement learning method. Neurocomputing, 194, 176–182 (https://doi.org/10.1016/j.neucom.2016.02.029).

5.     Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., Moore, J. H. (2016). Automating biomedical data science through tree-based pipeline optimization. European Conference on the Applications of Evolutionary Computation, 123–137.

6.     Dunis, C. L., Rosillo, R., de la Fuente, D., Pino, R. (2013). Forecasting IBEX-35 moves using support vector machines. Neural Compututing Applied, 23 (1), 229–236

7.     Zhou, F., Zhou, H. M., Yang, Z. H., Yang, L. H. (2019). EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction. Expert System Applied, 115, 136–151.

8.     Kumar, Hemanth P., Patil, Basavaraj S. (2018). Forecasting volatility trend of INR USD currency pair with deep learning LSTM techniques. 2018. 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS) (DOI: 10.1109/CSITSS.2018.8768767).

9.     Ling, X., Deng, W., Gu, C., Zhou, H., Li, C., Sun, F. (2017). Model ensemble for click prediction in Bing search Ads, in: Proceedings of the 26th International. Conference on World Wide Web Companion, pp. 689–698.

10.  Pradeepkumar, D., Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network. Applied Soft Computing, 58, 35–52.

11.  This Is What Makes 2022 Best Time for Launching Personal Finance App. (2022). URL: https://shakuro.com/blog/what-makes-now-a-great-time-to-build-a-personal-finance-app.

12.  How Top Personal Finance Companies Built The Best PFM Apps. URL: https://www.cbinsights.com/research/personal-finance-apps-strategies.

13.  Sacchitello, M. (2020). Best Online Brokers and Trading Platforms. ERL: https://www.investopedia.com/best-online-brokers-4587872.

14.  Ahmed, M. K., Wajiga, G. M., Blamah, N. V. & Modi, B. (2019). Stock market forecasting using ant colony optimization based algorithm. Am J Math Comput Model, 4(3), 52–57.

15.  Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F. & Li, L. (2022). Cryptocurrency trading: a comprehensive survey. Financial Innovation, 8(1), 1–59.

16.  Czupryna, M., Kubińska, E. (2015) .What makes technical analyses popular? Argumenta oeconomica cracoviensia, 12, 53–66.

17.  Wong, W., Manzur, M., Chew, B. (2013). How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics, 13 (7). (https://doi.org/10.1080/0960310022000020906).

18.  Sebastião, H. M. C. V., Cunha, P. J. O. R. D. & Godinho, P. M. C. (2021). Cryptocurrencies and blockchain. Overview and future perspectives. International Journal of Economics and Business Research, 21(3), 305-342.

19.  Orús, R., Mugel, S., Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4 (https://doi.org/10.1016/j.revip.2019.100028).

20.  Atsalakis, G., Dimitrakakis, E., Zopounidis, C. (2011). Elliott Wave Theory and neuro-fuzzy systems, in stock market prediction: The WASP system. Expert Systems with Applications, 38 (8), 9196–9206 (https://doi.org/10.1016/j.eswa.2011.01.068)

21.  Angelo, E., Grimaldi, G. (2017). The Effectiveness of the Elliott Waves Theory to Forecast Financial Markets: Evidence from the Currency Market. International Business Research, 10 (6) (https://doi.org/10.5539/ibr.v10n6p1).

22.  Ibrahim, A., Kashef, R. & Corrigan, L. (2021). Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers & Electrical Engineering, 89, 106905.

23.  Gidea, M., Goldsmith, D., Katz, Y., Roldan, P. & Shmalo, Y. (2020). Topological recognition of critical transitions in time series of cryptocurrencies. Physica A: Statistical mechanics and its applications, 548, 123843.

24.  Stankovska, A. (2017). Global Derivatives Market. SEEU Review, 81–93 (DOI: 10.1515/seeur-2017-0006).

25.  Cuny, C. (2018) When knowledge is power: Evidence from the municipal bond market. Journal of Accounting and Economics, 65, 109–28.

26.  Goldstein, I., Yang, S., Zuo, L. (2020). The Real Effects of Modern Information Technologies: Evidence from the EDGAR Implementation. National Bureau of economic research, 27529. (DOI 10.3386/w27529).

27.  Hong, D., Van, V., Minh, N. (2020). Derivatives market and economic growth nexus: Policy implications for emerging markets. The North American Journal of Economics and Finance, 54. (https://doi.org/10.1016/j.najef.2018.10.014).

28.  Kim, J., Moon, N. (2019). BiLSTM model based on multivariate time series data in multiple field for forecasting trading area. J Ambient Intell Human Comput. (https://doi.org/10.1007/s12652-019-01398-9).

29.  Lyakina, M., Koyundzhiyska-Davidkova, B., Popp, J. (2021). Technical analysis and its theoretical basis for trading activity management, Ekonomicko-manazerske spektrum, 15 (2), 52-64.

30.  Zhou, F., Zhang, Q., Sornette, D., Jiang, L. (2019). Cascading logistics regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84. (https://doi.org/10.1016/j.asoc.2019.105747).

References:

1.     Gao, M., Huang, J. (2020). Informing the market: the effect of modern information technologies on information production. The review of Financial Studies, 33 (4), 1367–1411 (https://doi.org/10.1093/rfs/hhz100).

2.     Chang, P. C., Liao, T. W., Lin, J. J., Fan, C. Y. (2011). A dynamic threshold decision system for stock trading signal detection. Applied Soft Computing, 11 (5), 3998–4010.

3.     Sun, Q., Lim, C. C., Shi, P., Liu, F. (2016). Moving horizon estimation for Markov jump systems. Information Science, 367, 143–158.

4.     Jiang, H., Zhang, H., Luo, Y., Wang, J. (2016). Optimal tracking control for completely unknown nonlinear discrete-time Markov jump systems using data-based reinforcement learning method. Neurocomputing, 194, 176–182 (https://doi.org/10.1016/j.neucom.2016.02.029).

5.     Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., Moore, J. H. (2016). Automating biomedical data science through tree-based pipeline optimization. European Conference on the Applications of Evolutionary Computation, 123–137.

6.     Dunis, C. L., Rosillo, R., de la Fuente, D., Pino, R. (2013). Forecasting IBEX-35 moves using support vector machines. Neural Compututing Applied, 23 (1), 229–236

7.     Zhou, F., Zhou, H. M., Yang, Z. H., Yang, L. H. (2019). EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction. Expert System Applied, 115, 136–151.

8.     Kumar, Hemanth P., Patil, Basavaraj S. (2018). Forecasting volatility trend of INR USD currency pair with deep learning LSTM techniques. 2018. 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS) (DOI: 10.1109/CSITSS.2018.8768767).

9.     Ling, X., Deng, W., Gu, C., Zhou, H., Li, C., Sun, F. (2017). Model ensemble for click prediction in Bing search Ads, in: Proceedings of the 26th International. Conference on World Wide Web Companion, pp. 689–698.

10.  Pradeepkumar, D., Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network. Applied Soft Computing, 58, 35–52.

11.  This Is What Makes 2022 Best Time for Launching Personal Finance App. (2022). URL: https://shakuro.com/blog/what-makes-now-a-great-time-to-build-a-personal-finance-app.

12.  How Top Personal Finance Companies Built The Best PFM Apps. URL: https://www.cbinsights.com/research/personal-finance-apps-strategies.

13.  Sacchitello, M. (2020). Best Online Brokers and Trading Platforms. ERL: https://www.investopedia.com/best-online-brokers-4587872.

14.  Ahmed, M. K., Wajiga, G. M., Blamah, N. V. & Modi, B. (2019). Stock market forecasting using ant colony optimization based algorithm. Am J Math Comput Model, 4(3), 52–57.

15.  Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F. & Li, L. (2022). Cryptocurrency trading: a comprehensive survey. Financial Innovation, 8(1), 1–59.

16.  Czupryna, M., Kubińska, E. (2015) .What makes technical analyses popular? Argumenta oeconomica cracoviensia, 12, 53–66.

17.  Wong, W., Manzur, M., Chew, B. (2013). How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics, 13 (7). (https://doi.org/10.1080/0960310022000020906).

18.  Sebastião, H. M. C. V., Cunha, P. J. O. R. D. & Godinho, P. M. C. (2021). Cryptocurrencies and blockchain. Overview and future perspectives. International Journal of Economics and Business Research, 21(3), 305-342.

19.  Orús, R., Mugel, S., Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4 (https://doi.org/10.1016/j.revip.2019.100028).

20.  Atsalakis, G., Dimitrakakis, E., Zopounidis, C. (2011). Elliott Wave Theory and neuro-fuzzy systems, in stock market prediction: The WASP system. Expert Systems with Applications, 38 (8), 9196–9206 (https://doi.org/10.1016/j.eswa.2011.01.068)

21.  Angelo, E., Grimaldi, G. (2017). The Effectiveness of the Elliott Waves Theory to Forecast Financial Markets: Evidence from the Currency Market. International Business Research, 10 (6) (https://doi.org/10.5539/ibr.v10n6p1).

22.  Ibrahim, A., Kashef, R. & Corrigan, L. (2021). Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Computers & Electrical Engineering, 89, 106905.

23.  Gidea, M., Goldsmith, D., Katz, Y., Roldan, P. & Shmalo, Y. (2020). Topological recognition of critical transitions in time series of cryptocurrencies. Physica A: Statistical mechanics and its applications, 548, 123843.

24.  Stankovska, A. (2017). Global Derivatives Market. SEEU Review, 81–93 (DOI: 10.1515/seeur-2017-0006).

25.  Cuny, C. (2018) When knowledge is power: Evidence from the municipal bond market. Journal of Accounting and Economics, 65, 109–28.

26.  Goldstein, I., Yang, S., Zuo, L. (2020). The Real Effects of Modern Information Technologies: Evidence from the EDGAR Implementation. National Bureau of economic research, 27529. (DOI 10.3386/w27529).

27.  Hong, D., Van, V., Minh, N. (2020). Derivatives market and economic growth nexus: Policy implications for emerging markets. The North American Journal of Economics and Finance, 54. (https://doi.org/10.1016/j.najef.2018.10.014).

28.  Kim, J., Moon, N. (2019). BiLSTM model based on multivariate time series data in multiple field for forecasting trading area. J Ambient Intell Human Comput. (https://doi.org/10.1007/s12652-019-01398-9).

29.  Lyakina, M., Koyundzhiyska-Davidkova, B., Popp, J. (2021). Technical analysis and its theoretical basis for trading activity management, Ekonomicko-manazerske spektrum, 15 (2), 52-64.

30.  Zhou, F., Zhang, Q., Sornette, D., Jiang, L. (2019). Cascading logistics regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84. (https://doi.org/10.1016/j.asoc.2019.105747).