ТЕНЗОРНІ МОДЕЛІ ІНТЕРВАЛЬНОЇ МАТЕМАТИКИ В ОСНОВІ МЕТОДУ РОЗВ’ЯЗАННЯ ЗАДАЧ УПРАВЛІННЯ ЗА УМОВ НЕВИЗНАЧЕНОСТІ
1. Moore R.E. Introduction to interval analysis /Moore R.E., Kearfott R.B., Cloud M.J. – Philadelphia: Society for Industrial and Applied Mathematics.–2009.–234 р.
2. Оселедець И.В. Тензорные разложения и их применения: лекция в Яндексе 30 октября 2016 в 17:39. [Электрон.ресурс] / И.В Оселедець. – Режим доступа: https://habrahabr.ru/com-pany/yandex/blog/313892/
3. Гутовски М. В. Красота и сила интервальных методов. [Электрон. ресурс] / М.В. Гутовски М. В.- Режим доступа: http://www.nsc.ru/interval/Introduсtion/PowerBeauty. pdf
4. Kearfott R.B. Interval Computations: Introduction, Uses, and Resources, Euromath. Bull., 2 (1), pp. 95–112.
5. Interval Computations. [Electronic resource] /–Режим доступа: /http://www.cs.utep.edu/ interval-comp/
6. Интервальный анализ и его приложения. [Электрон. ресурс] / – Режим доступа: http: //www.nsc.ru/interval
7. Шарый С.П. Конечномерный интервальный анализ. /С.П. Шарый. – Новосибирск: ИВТ СО РАН. – 2013. – 702 с.
8. Gutowski M.W. Interval straight line fitting. [Electronic resource] / M.W Gutowski – Access mode: http://arXiv.org/ abs/math/ 0108163/.
9. Gutowski M.W. Prosta dostatecznie gruba. [Electronic resource] / M.W Gutowski – Access mode: http://pupil.ifpan.edu. pl/ ~postepy/ dodatki/prosta/prosta.pdf
10. Нариньяни А.С. Недоопределенные модели и операции с недоопределенными значениями / А.С. Нариньяни. – Новосибирск: Препринт ВЦ СО АН СССР. – 1982. – 400 с.
11. Нариньяни А.С. Недоопределенность в системах представления и обработки знаний / А.С. Нариньяни // Изв. АН СССР. Техн. Кибернетика. – 1986.–№ 5. – С. 3 – 28.
12. Schneider J. Arithmetic of fuzzy numbers and intervals – a new perspective with examples [Electronic resource] / J.SCHNEIDER. – Access mode: arXiv: 1310.5604v1 [math.GM] 16 Oct 2013.
13. Boukezzoula R. Inverse arithmetic operators for fuzzy intervals [Electronic resource] /R.Boukezzoula, S.Galichet, L.Foulloy. – Access mode:www.eusflat.org/...2007/... /GALICHET_ Sylvie (111).pdf/.
14. Fortin J., Dubois D., Fargier H. Gradual Numbers and their Application to Fuzzy Interval Analysis. IEEE Transactions on Fuzzy Systems. – 2008. – 16, 2. – P. 388 – 402.
15. Lindblad J. Fuzzy Sets and Fuzzy Techniques.Lecture 9. Fuzzy numbers and fuzzy arith-metics [Electronic resource] /J. Lindblad. – Access mode:http://www.cb.uu.se/~joakim/course/fuz-zy/vt07/lectures/L9_4.pdf
16. Lodwick W. Introduction to Fuzzy and Possibilistic Optimization” / W.Lodwick, E. Untiedt // in Chapter 1: Fuzzy Optimization: Recent Developments and Applications, Weldon A. Lod-wick and Janusz Kacprzyk (Editors), Springer-Verlag, New York, 2010.
17. Lodwick W. A. Fundamentals of Interval Analysis and Linkages to Fuzzy Set Theory. Handbook of granular computing / W. Pedrycz, A. Skowron, Vl. Kreinovich. – John Wiley, Publishers, West Sussex, England.-2008, pp.55-79.
18. Aminifar S. A. Uncertainty in Interval Type-2 Fuzzy Systems / S. Aminifar, A. Marzuki// Mathematical Problems in Engineering Volume 2013, Article ID 452780. –16 рp.
19. Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty: Sandia Report: SAND2007-0939 / Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550: Ferson S., Kreinovich V., Hajagos J., Oberkampf W. and Ginzburg L. – 2007. – 162 рр.
20. Dutta P. Fuzzy Arithmetic with and without using α-cut method: A Comparative Study / P.Dutta, H. Boruah, T. Ali // International Journal of Latest Trends in Computing. – 2011, Vol. 2, Issue 1, 99-108.
21. Khatab A. Kronecker Algebra for series-parallel multi-state systems reliability evaluation / A. Khatab, D. Aitkadi, N. Regz // Evaluation and optimization of innovative production systems of goods and services: 8-th International Conference of Modeling and Simulation – MOSIM’10, Ham-mamet–Tunisia, May 10-12, 2010. – 340рр.
22. Молодцов Д.А. Теория мягких множеств / Д.А. Молодцов. – М.: Эдиториал УРСС, 2004. – 380 c
23. Мациевский В. Множества, мультимножества, нечеткие и мягкие множества без универсума / В. Мациевский В// Вестник РГУ им. И. Канта. (Серия «Физ.-мат. науки»). –2007. – Вып. 10. – С. 44 – 52.
24. Kang U. GigaTensor: Scaling Tensor Analysis Up By 100 Times-Algorithms and Disco-veries / U.Kang, E.Papalexakis, A. Harpale, C. Faloutsos//18-th ACM SIGKDD international confe-rence on Knowledge discovery and data mining: Beijing, China – August 12 – 16, 2012; Proceedings of the 18-th ACM SIGKDD, ACM New York, NY, USA.
25. Wang S. A Practical Guide to Randomized Matrix Computations with MATLAB Imple-mentations [Electronic resource] / S.Wang. – Access mode: arXiv:1505.07570v6 [cs.MS]-57 pp.
26. Кофман А. Введение в теорию нечетких множеств / A. Кофман: Пер. с франц. – М.: Радио и связь, 1982. – 432 с.
1. Moore, R.E., Kearfott, R.B., Cloud, M.J. (2009). Introduction to interval analysis. Philadelphia: Society for Industrial and Applied Mathematics, 234.
2. Oseledets', I.V. Tenzornyye razlozheniya i ikh primeneniya. Lektsiya v Yandekse 30 oktyabrya 2016 v 17:39. [Electronic resource]. – Access mode: https://habrahabr.ru/ compa-ny/yandex/blog/313892/
3. Gutovski, M.V. KRASOTA I SILA INTERVAL'NYKH METODOV. [Electronic resource]. – Access mode: www.nsc.ru/interval/Introduction/PowerBeauty.pdf
4. Kearfott, R.B. Interval Computations: Introduction, Uses, and Resources. Euromath. Bull., 2 (1), 95–112. [Electronic resource] / R.B Kearfott. Access mode: http://interval.louisiana.edu/ preprints/survey.ps
5. Interval Computations. [Electronic resource] / – Access mode: /http://www.cs.utep.edu/ interval-comp/
6. Interval'nyy analiz i yego prilozheniya. [Electronic resource]. – Access mode: http://www.nsc.ru/interval (date of address 28.09.2013).
7. Sharyy, S.P. Konechnomernyy interval'nyy analiz. – Novosibirsk, IVT SO RAN, 2013 S.P. Sharyy. Konechnomernyy interval'nyy analiz. – Novosibirsk, IVT SO RAN, 20132013. [Electronic resource]. – Access mode: http://www.nsc.ru/interval/Library/InteBooks/Shary Book.pdf (date of address 28.09.2013).
8. Gutowski, M.W. Interval straight line fitting. [Electronic resource] / M.W Gutowski – Access mode: http://arXiv.org/ abs/math/ 0108163.
9. Gutowski, M.W. Prosta dostatecznie gruba. [Electronic resource] / M.W Gutowski – Access mode: http://pupil.ifpan.edu. pl/ ~postepy/ dodatki/prosta/prosta.pdf
10. Narin'yani, A.S. (1982). Non-determined models and operations with non-determined meaings. Preprint VTS SO AN SSSR, 400.
11. Narin'yani, A.S. (1986). Non-determiness in the system of kniwlage processing. Izv. AN SSSR. Tekhn. kibernetika, 5. 3–28.
12. Schneider, J. (2013). Arithmetic of fuzzy numbers and intervals – a new perspective with examples [Electronic resource] / J.SCHNEIDER. – Access mode: arXiv: 1310.5604v1 [math.GM] 16 Oct 2013.
13. Boukezzoula, R. (2007). Inverse arithmetic operators for fuzzy intervals [Electronic resource] /R.Boukezzoula, S.Galichet, L.Foulloy. – Access mode:www.eusflat.org/...2007/... /GALICHET_ Sylvie_ (111).pdf.
14. Fortin, J. (2008). Gradual Numbers and their Application to Fuzzy Interval Analysis / Fortin J., Dubois D., Fargier H. // IEEE Transactions on Fuzzy Systems, 16, 2, 388–402.
15. Lindblad, J. Fuzzy Sets and Fuzzy Techniques.Lecture 9. Fuzzy numbers and fuzzy arith-metics [Electronic resource] /J. Lindblad.- Access mode:http://www.cb.uu.se/~joakim/course/fuz-zy/vt07/lectures/L9_4.pdf
16. Lodwick, W. (2010). Introduction to Fuzzy and Possibilistic Optimization” /W.Lodwick, E. Untiedt// in Chapter 1: Fuzzy Optimization: Recent Developments and Applications, Weldon A. Lod-wick and Janusz Kacprzyk (Editors), Springer-Verlag, New York.
17. Lodwick, W.A. (2008). Fundamentals of Interval Analysis and Linkages to Fuzzy Set Theory. Handbook of granular computing / W. Pedrycz, A. Skowron, Vl. Kreinovich. John Wiley, Publishers, West Sussex, England, 55-79.
18. Aminifar, S.A. (2013). Uncertainty in Interval Type-2 Fuzzy Systems / S. Aminifar, A. Marzuki// Mathematical Problems in Engineering, 16.
19. Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty: Sandia Report: SAND2007-0939 / Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550: Ferson S., Kreinovich V., Hajagos J., Oberkampf W. and Ginzburg L, 162.
20. Dutta, P. (2011). Fuzzy Arithmetic with and without using α-cut method: A Comparative Study / P.Dutta, H. Boruah, T. Ali // International Journal of Latest Trends in Computing, 2, 1, 99–108.
21. Khatab, A. (2010). Kronecker Algebra for series-parallel multi-state systems reliability evaluation / A. Khatab, D. Aitkadi, N. Regz // Evaluation and optimization of innovative production systems of goods and services: 8-th International Conference of Modeling and Simulation – MOSIM’10, Ham-mamet – Tunisia, May 10-12, 2010.
22. Molodtsov, D.A. (2004). Theory of soft scores. Moscow, Russia: Editorial URSS, 380.
23. Matsiyevskiy, V. (2007). Scores, multiscores, fuzy and soft scores without universalisms. Vestnik RGU im. I. Kanta, 10, 44–52.
24. Kang, U. (2012). GigaTensor: Scaling Tensor Analysis Up By 100 Times-Algorithms and Disco-veries / U.Kang, E.Papalexakis, A. Harpale, C. Faloutsos//18-th ACM SIGKDD international confe-rence on Knowledge discovery and data mining: Beijing, China – August 12 – 16, 2012; Proceedings of the 18-th ACM SIGKDD, ACM New York, NY, USA.
25. Wang, S. A Practical Guide to Randomized Matrix Computations with MATLAB Imple-mentations [Electronic resource] / S.Wang. – Access mode: arXiv: 1505.07570v6 [cs.MS]. – 57 pp.
26. Kofman, A. (1982). Introduction into the theory f fuzy scores: Trans. from French. Moscow, Russia: Radio i svyaz', 432.