Інтелектуальний аналіз часових рядів ( ВР ) . Прогнозування гранульованого часового ряду і рішення на основі гранулярного комп'ютингу прикладних задач
1. Минаев Ю.Н. Филимонова О.Ю., Минаева Ю.И. Интеллектуальный анализ временных рядов (ВР) Сингулярных декомпозиций и гранулярный компьютинг в задачах интеллектуального анализа временных рядов. – 2014. – №18. – С.112-118.
2. Song Q., Chissom B. Fuzzy time series and its models // Fuzzy Sets and Systems. – №54 (1993) – Р. 269-277.
3. Song Q., Chissom B. Forecasting enrollments with fuzzy time series –Part I // Fuzzy Sets and Systems. – №54 (1993) –Р. 1-9.
4. Song Q., Chissom B. Forecasting enrollments with fuzzy time series – Part II // Fuzzy Sets and Systems. – №64 (1994) – Р. 1-8.
5. Chen S. M. Forecasting enrollments based on fuzzy time series // Fuzzy Sets and Systems. – № 81 (1996) – Р. 311–319.
6. Дегтярев К. Ю. Применение специализированных компьютерных программ и методов, основанных на нечетких временных рядах для краткосрочного прогнозирования USB/RUB котировок / Интернет-ресурс: http://www.еxponenta.ru/educat/news/degtyarev/pa-per. pdf; дата обращения 30.12.2013.
7. Минаев Ю.Н., Филимонова О.Ю., Минаева Ю.И. Тензорные модели НМ-гранул и их применение для решения задач нечеткой арифметики. «Искусственный интеллект». – №2, 2013. – С.18-31.
8. Cichocki A. Tensor Decompositions: A New Concept in Brain Data Analysis? arXiv: 1305.0395v1 [cs.NA] 2 May 2013. – 19 pp.
9. Van Loan Ch.F. Block Matrix Computations and the Singular Value Decomposition A Tale of Two Ideas. - Інтернет-ресурс. www.ecsecure-host.com
10. Van Loan Ch.F. The ubiquitous Kronecker product. Journal of Computational and applied mathematics. 2000, 123(1-2): 85-100
11. Skillicorn D. B. Understanding complex datasets: data mining with matrix decompo-sitions /2007 by Taylor and Francis Group, LLC. – 257 рр.
12. Laub Al. J. Matrix Analysis for Scientists and Engineers" Alan J. Laub. … from SIAM at www.ecsecure-host.com/ SIAM/ot91.htm ©2005 by the Society for Industrial and Applied Mathematics
13. Lev-Ari H. Efficient Solutions of linear matrix equation with application to multis-tatic antenna array processing communication and systems. Vol. 5, No. 1, pp. 123-130, 2005.
14. Минаев Ю.Н., Филимонова О.Ю., Лиес Б.А. Методы и алгоритмы решения задач идентификации и прогнозирования в условиях неопределенности в нейросетевом логическом базисе.- М.: Диалог-МИФИ, 2006. – 224 с.
15. Зубов Л. М., Карякин М. И. Элементы тензорного исчисления. Учеб. Пособие. Ростов: Изд-во Ростовского госуниверситета. – 108 с. Интернет-ресурс.
1. Minaev Y.N., Filimonov O.Y., Minayeva Y.I. (2014). Intelligent analysis of time series (BP) Singular decomposition and granular computing tasks in time series mining. – 2014. – №. 18 – S. 112-118.
2. Song Q., Chissom B. (1993). Fuzzy time series and its models // Fuzzy Sets and Systems. – № 54 (1993) – R. 269-277.
3. Song Q., Chissom B. (1993). Forecasting enrollments with fuzzy time series-Part I // Fuzzy Sets and Systems. – № 54 (1993) p. 1-9.
4. Song Q,, Chissom B. (1994). Forecasting enrollments with fuzzy time series - Part II // Fuzzy Sets and Systems. – № 64 (1994) – R. 1-8.
5. Chen SM (1996).Forecasting enrollments based on fuzzy time series // Fuzzy Sets and Systems. – № 81 (1996) – R. 311-319.
6. Degtyarev K.Y.(2013). Application of specialized computer programs and methods based on fuzzy time series for the short-term forecasting USB / RUB quotes / Internet resource: http: //www.еxponenta.ru/educat/news/degtyarev/pa-per. pdf; date accessed 30.12.2013.
7. Minaev Y.N., Filimonova O.Y., Minayeva J.I.(2013) Tensor model HM - granules and their application to solving fuzzy arithmetic. "Artificial Intelligence". – № 2, 2013. – P.18 - 31.
8. Cichocki A.(2013) Tensor Decompositions: A New Concept in Brain Data Analysis? arXiv: 1305.0395v1 [cs.NA] 2 May 2013. – 19 pp.
9. Van Loan Ch.F. Block Matrix Computations and the Singular Value Decomposition A Tale of Two Ideas. - Services Internet resource http://www.ecsecure-host.com:
10. Van Loan Ch.F. (2000). The ubiquitous Kronecker product. Journal of Computational and applied mathematics. 2000, 123 (1-2): 85-100.
11. Skillicorn DB (2007). Understanding complex datasets: data mining with matrix decompo-sitions / 2007 by Taylor and Francis Group, LLC. – 257 pp.
12. Laub Al. J. Matrix Analysis for Scientists and Engineers "Alan J. Laub.... from SIAM at www.ecsecure-host.com/ SIAM/ot91.htm © 2005 by the Society for Industrial and Applied Mathematics.
13. Lev-Ari H. Efficient Solutions of linear matrix equation with application to multis-tatic antenna array processing communication and systems. Vol. 5, No. 1, pp. 123-130, 2005.
14. Minaev Y.N., Filimonova O.Y., Lies BA (2006). Methods and algorithms for solving identification and forecasting under uncertainty in the neural network logical basis. – Moscow: Dialog – MIFI 2006. – 224.
15. Zubov. L.M., Karjakin M.I. Tensor elements ischisleniya.Ucheb. allowance. Publishing House of the Rostov State University. – 108. Internet resource.